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0.1 Introduction

The course is mainly based on the book Spivak Calculus covers chapter 10 of A readable introduction to real
mathematics by Daniel Rosenthal et al.
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Chapter 1

Week 1

1.1 Cardinality

Definition 1.1.1: Cardinality

Cardinality is the ”number of things” in a set. Example: 𝐴 = {1, 2, 3} has cardinality 3, 𝐵 = {1, 2, 3, ...}
has infinite cardinality. To be specific, when counting the numbers in the set, the mapping of numbers to
the elements need to be bijective.

Definition 1.1.2

Given two sets 𝑆 and 𝑇, if there is a 𝑓 : 𝑆 → 𝑇, that’s bijective,𝑆 and 𝑇 have the same cardinality, we
write |𝑆| = |𝑇|.

Definition 1.1.3

Given a bijective function 𝑓 : 𝑆 → 𝑇 then 𝑆 and 𝑇 have the same cardinality

Note:-

Note that the concepts of injective, surjective and bijective functions are noted down in course note MAT 240,
thus disregard

Example 1.1.1 (Bijection from [1, 3] → (30, 40])
(This is a thinking question at the end of the week 1 lecture) Construct a bijection between [1,3] to (30,40]
A solution could be that

𝑓 (𝑥) =

30 + 1

2 , 𝑥 = 1,

30 + 1
2𝑛+1 , 𝑥 = 1 + 2−𝑛

5 , 𝑛 ∈ ℕ

5𝑥 + 25, otherwise.

The basic idea is that the sequence 1
2𝑛 , 𝑛 ∈ ℕ is strictly decreasing from 1

2 approaching 0. This allows us
to construct a sequence 30 + 1

2𝑛 which is decreasing from 30 + 1
2 to 30. By shifting it to the left, we have

30 + 1
2𝑛+1 , which gives a vacant spot for assigning the case where 𝑥 = 1 (the idea of Hilbert’s hotel).

The second case’s condition may look strange. The since we have pushed te 30 + 1
2𝑛 sequence back by

one, we need to remap the preimage of it to the new one. The original function is 𝑓 (𝑥) = 5𝑥 + 25, so the

condition derives from solving the equation 30 + 1
2𝑛 = 5𝑥 + 25, which gives 𝑥 = 1 + 2−𝑛

5
In short, the key idea is to find a decreasing sequence in the codomain that’s approaching the open end,
and shift it to allow a space for 𝑥 = 1.
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Definition 1.1.4

A set 𝐴 is finite if there is a 𝑛 ∈ ℕ and a 𝑓 : {1, 2, ..., 𝑛} → 𝐴 which is bijective. We say |𝐴| = 𝑛

Definition 1.1.5

If 𝐴 is the empty set then |𝐴| = |∅| = |{}| = 0

Definition 1.1.6

A set 𝐴 is countable if 𝐴 is infinite or |𝐴| = |ℕ|. There is 𝑓 : ℕ → 𝐴 is bijective

Example 1.1.2 (Even natural numbers have same cardinality as all natural numbers )

Question 1

Let 𝔼 = even natural numbers = {2, 4, 6, 8, ...}. |𝔼| = |ℕ| and 𝐸 is countable. Find a function
𝑓 : ℕ → 𝔼, where 𝑓 is bijective.

Solution:
𝑓 (𝑛) = 2𝑛

Claim 1.1.1 𝑓 (𝑛) = 2𝑛 is injective

Proof: Assume 𝑓 (𝑛1) = 𝑓 (𝑛2) where 𝑛1 , 𝑛2 ∈ ℕ. Then 2𝑛1 = 2𝑛2 and so 2(𝑛1 − 𝑛2) = 0. Therefore
𝑛1 − 𝑛2 = 0 and so 𝑛1 = 𝑛2. Thus 𝑓 is injective.

Claim 1.1.2 𝑓 (𝑛) = 2𝑛 is surjective

Proof: Let 𝑡 ∈ 𝔼. Then 𝑡 = 2𝑛 for some 𝑛 ∈ ℕ. Therefore 𝑓 (𝑛) = 𝑡. And 𝑓 is onto 𝔼.

Example 1.1.3 (The set of even natural numbers and the set of odd natural numbers have the same
cardinality.)

Proof: Let the set of even natural numbers 𝐸 = {2, 4, ..., 2𝑛, ..} and the set of odd natural numbers
𝑂 = {1, 3, ..., 2𝑛 − 1, ...} To satisfy the definition 1.1, we need to show that there is a injective function
taking 𝐸 onto 𝑂. Define a function 𝑓 : 𝐸 → 𝑂, simply note that 𝑘1 − 1 = 𝑘2 − 1 implies 𝑘1 = 𝑘2. Also, 𝑓
is surjective, because for any 𝑚 ∈ 𝑂, 𝑚 = 2𝑛 − 1 for some 𝑛 ∈ ℕ. Therefore 𝑓 (2𝑛) = 2𝑛 − 1 = 𝑚. Thus, 𝑓
is bijective and |𝐸| = |𝑂|.

Example 1.1.4 (The set of natural numbers and the set of nonnegative integers have the same cardinality.)

Proof: Let 𝑆 denote the set of nonnegative integers. We want to construct a bijective function 𝑓 : 𝑆 → ℕ.
Let 𝑓 be 𝑓 (𝑛) = 𝑛 + 1, 𝑛 ∈ 𝑆. This makes 𝑓 surjective. Also, 𝑓 (𝑛2) = 𝑓 (𝑛2) implies 𝑛1 + 1 = 𝑛2 + 1, giving
𝑛1 = 𝑛2. Since 𝑓 is bijective, ℕ and 𝑆 have the same cardinality.

Theorem 1.1.1 The set of natural numbers and the set of positive rational numbers have the same cardinality

Proof: To prove the theorem, we first construct the array:
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1
1

1
2

1
3

1
4

1
5

1
6

1
7 · · ·

2
1

2
2

2
3

2
4

2
5

2
6

2
7 · · ·

3
1

3
2

3
3

3
4

3
5

3
6

3
7 · · ·

4
1

4
2

4
3

4
4

4
5

4
6

4
7 · · ·

...
...

...
...

...
...

...

Let the following:

• 𝑓 (1) = 1
1

• 𝑓 (2) = 1
2

• 𝑓 (3) = 2
1

• 𝑓 (4) = 3
1

• 𝑓 (5) = 1
3

• 𝑓 (6) = 1
4

• 𝑓 (7) = 2
3

• 𝑓 (8) = 3
2

• 𝑓 (9) = 4
1

• 𝑓 (10) = 5
1

• ...

We can observe that for the first diagonal of equivalent elements 1/1, 2/2, ... it moves 1 down 1 right, 1𝑑1𝑟
in short. Next for 1/2 it moves 1𝑑2𝑟 and 1𝑑3𝑟 for 1/3, and so on. Moreover, for 2/1, 4/2, ... it move 2𝑑1𝑟,
and 3/1, 6/2, ... moves 3𝑑1𝑟, and so on. According to this sequence, we can pair natural numbers to the
positive rational numbers indicated in the ”zigzagging” manner. Therefore |ℚ+| = |ℕ|
To be precise, consider the set

𝑆 = {(𝑚, 𝑛) ∈ ℕ ×ℕ : 𝑔𝑐𝑑(𝑚, 𝑛) = 1}
Next define the function 𝑓 :

𝑓 : ℕ → ℚ > 0, 𝑓 (𝑥) = 𝑚𝑥

𝑛𝑥
.

Claim 1.1.3 𝑓 is injective

Proof: If 𝑓 (𝑥) = 𝑓 (𝑦),
𝑚𝑥

𝑛𝑥
=
𝑚𝑦

𝑛𝑦

since both fraction have gcd = 1,𝑥 = 𝑦

Claim 1.1.4 𝑓 is surjective

Proof: Take any 𝑞 ∈ ℚ+, it can be expressed as 𝑞 = 𝑚
𝑛 in lowest terms. Then (𝑚, 𝑛) ∈ 𝑆, which

equals to some 𝑎𝑥 , 𝑏𝑥), thus 𝑓 (𝑥) = 𝑞

Since the function 𝑓 is bijective, |ℕ| = |ℚ>0|

5



Another proof (during lecture)

Proof: Define

𝑅 = { 𝑞
𝑝
: 𝑝, 𝑞 ∈ ℕ}

Clearly ℚ+ ⊊ 𝑅, since, for example 2
4 ∈ 𝑅 but when considered as a set of rationals we have 2/4 = 1/2 ∈ ℚ+.

Lemma 1.1.1

Any subset of a countable set is either finite or countably infinite.

By proving 𝑅 is countable, it follows that ℚ+ is countable as well. Consider the map

𝜓 : ℕ ×ℕ → 𝑅

𝜓(𝑝, 𝑞) = 𝑞

𝑝

This is a surjection. Now we need to prove that ℕ × ℕ is countable. We define the Cantor pairing
function 𝑔 : ℕ ×ℕ → ℕ,

𝑔(𝑖 , 𝑗) = (𝑖 + 𝑗 − 2)(𝑖 + 𝑗 − 1)
2

+ 𝑗

This enumerates all lattice points (𝑖 , 𝑗) by diagonals of constant sum 𝑖 + 𝑗. By checking it’s bijective (skip),
ℕ ×ℕ is countable. Taking the inverse 𝑓 = 𝑔−1 : ℕ → ℕ ×ℕ. Since 𝜓 is surjective mapping ℕ ×ℕ to 𝑅,
𝜑 = 𝜓 ◦ 𝑓 : ℕ → 𝑅 is a surjection. Therefore 𝑅 is countable. Applying the lemma, it implies that ℚ+ is
countable.

Definition 1.1.7: Pigeonhole principle

If 𝑆 is a finite set, then a function 𝑔 : 𝑆 → 𝑆 is injective, if and only if it is onto. This principle fails for
infinite sets.

Proof:

1.2 Countable Sets and Uncountable Sets

Definition 1.2.1: Countable

A set is countable (or denumerable or enumerable) if it is either

• finite

• or has the same cardinality as the set of natural numbers.

Definition 1.2.2: Closed interval

For 𝑎 and 𝑏 real numbers with 𝑎 ⩽ 𝑏, the closed interval from 𝑎 to 𝑏 is the set of all real numbers between
𝑎 and 𝑏, including them. It’s denoted [𝑎, 𝑏] = {𝑥 : 𝑎 ⩽ 𝑥 ⩽ 𝑏}

Theorem 1.2.1

The closed interval [0, 1] is uncountable.

Proof: We will show that there is no function 𝑓 maps ℕ onto [0, 1]. The following is Cantor diagonal
argument. Suppose that 𝑓 is any function taking ℕ → [0, 1]. To prove that 𝑓 cannot be onto, we can
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imagine the following construction where we write out all the values of 𝑓 in a list, as follows:

𝑓 (1) = .𝑎11𝑎12𝑎13𝑎14𝑎15 . . .

𝑓 (2) = .𝑎21𝑎22𝑎23𝑎24𝑎25 . . .

𝑓 (3) = .𝑎31𝑎32𝑎33𝑎34𝑎35 . . .

𝑓 (4) = .𝑎41𝑎42𝑎43𝑎44𝑎45 . . .

𝑓 (5) = .𝑎51𝑎52𝑎53𝑎54𝑎55 . . .

...

In other words, for 𝑓 (𝑥) = 0.𝑎1𝑎2..., where

𝑎𝑘 = ⌊10𝑘𝑥⌋ − 10⌊10𝑘+1𝑥⌋

Now we need to construct a number in [0, 1] but not in the range of function 𝑓 . We consider the following
sequence 𝑥 = .𝑏1𝑏2.... where if 𝑎𝑖𝑖 = 3,𝑏𝑖 = 4, and if 𝑎𝑖𝑖 ≠ 3,𝑏𝑖 = 3. In this way, we can construct a number
𝑥 that differs 𝑓 (𝑗) in it’s 𝑗th digit. Thus 𝑓 (𝑗) ≠ 𝑥∀𝑗, so 𝑥 is not in the range of 𝑓 . Moreover, if we try to
adding the number 𝑥 into the range of 𝑓 by having a new function 𝑔 where 𝑔(1) = 𝑥 and 𝑔(𝑛) = 𝑓 (𝑛 − 1)
for 𝑛 ⩾ 2 (basically shifting every element in 𝑓 back by 1). However, the construction above could be
used again on 𝑔(𝑥) and construct a new 𝑥 that is not in the range of 𝑔. Thus this proves that [0, 1] is not
countable.

To be more precise,

Proof: Every 𝑦 ∈ [0, 1] has binary expansion

𝑦 =

∑
𝑘⩾1

𝑎𝑘2
−𝑘 , 𝑎𝑘 ∈ 0, 1

Some 𝑦 has two expansions, e.g. 0.10000...2 and 0.0111...2.. For each 𝑛 ∈ ℕ, a convention is that to write
𝑓 (𝑛) in its binary expansion that’s not eventually all 1’s.
We can write

𝑓 (𝑛) = 0.𝑎𝑛1𝑎𝑛2𝑎𝑛3..., 𝑎𝑛𝑘 ∈ {0, 1}
Define a binary sequence where 𝑏𝑘 ⩾ 1 by 𝑏𝑘 := 1 − 𝑎𝑘𝑘 , let

𝑥 := 0.𝑏1𝑏2𝑏3... =
∑
𝑘⩾1

𝑏𝑘2
−𝑘

Then 𝑥 ∈ [0, 1]. This makes 𝑥 and 𝑓 (𝑛) differ in the 𝑛-th digit, so 𝑥 ≠ 𝑓 (𝑛). Since this holds for every 𝑛,
we conclude 𝑥 ∉ 𝑓 (ℕ). Therefore, no function 𝑓 : ℕ → [0, 1] is surjective. Hence [0, 1] is uncountable.

Theorem 1.2.2

If 𝑎 and 𝑏 are real numbers and 𝑎 < 𝑏, the [𝑎, 𝑏] and [0, 1] have the same cardinality.

Proof: The theorem will be established if there is a bijective function 𝑓 : [0, 1] → [𝑎, 𝑏]. Let 𝑓 (𝑥) =

𝑎 + (𝑏 − 𝑎)𝑥. Then 𝑓 (0) = 𝑎 and 𝑓 (1) = 𝑏.
To prove it’s injective, we have

𝑓 (𝑥1) = 𝑓 (𝑥2)
𝑎 + (𝑏 − 𝑎)𝑥1 = 𝑎 + (𝑏 − 𝑎)𝑥2

(𝑏 − 𝑎)𝑥1 = (𝑏 − 𝑎)𝑥2
𝑥1 = 𝑥2

To show that 𝑓 is surjective, let 𝑦 be any element of [𝑎, 𝑏]. Let 𝑥 =
𝑦−𝑎
𝑏−𝑎 . Then 𝑥 ∈ [0, 1] and 𝑓 (𝑥) = 𝑦.

Thus, the 𝑓 is bijective, and |[0, 1]| = |[𝑎, 𝑏]|

7



Theorem 1.2.3 The intervals [0, 1] and (0, 1] have the same cardinality

Similar proof to the thinking question 1.1, thus disregard.

Theorem 1.2.4 If |𝑆| = |𝑇| and |𝑇| = |𝑈|, then |𝑆| = |𝑈|

Proof: Let 𝑓 : 𝑆 → 𝑇 and 𝑔 : 𝑇 → 𝑈 be bijective, and ℎ = 𝑔 ◦ 𝑓 . Given 𝑢 ∈ 𝑈, since 𝑔 is surjective,
there exists a 𝑡 ∈ 𝑇 such that 𝑔(𝑡) = 𝑢.
Step 1: proving surjectivity. Since 𝑓 is surjective, there s an 𝑠 ∈ 𝑆 such that 𝑓 (𝑠) = 𝑡. Then
ℎ(𝑠) = 𝑔( 𝑓 (𝑠)) = 𝑔(𝑡) = 𝑢. Thus, ℎ is surjective.
Step 2: proving injectivity. Suppose that ℎ(𝑠1) = ℎ(𝑠2), 𝑔( 𝑓 (𝑠1)) = 𝑔( 𝑓 (𝑠2)), so 𝑓 (𝑠1) = 𝑓 (𝑠2) since 𝑔 is
injective. Since 𝑓 is also injective, so 𝑠1 = 𝑠2. This proves that ℎ is bijective, and |𝑆| = |𝑈|.

Theorem 1.2.5 If 𝑎, 𝑏, 𝑐, 𝑑 are real numbers with 𝑎 < 𝑏 and 𝑐 < 𝑑, then (𝑎, 𝑏] and (𝑐, 𝑑] have the same
cardinality

Proof: 𝑓 is defined by 𝑓 (𝑥) = 𝑎 + (𝑏 − 𝑎)𝑥 which is a injective function mapping (0, 1] onto (𝑎, 𝑏], as
mentioned in the theorem 1.2. Hence, |(0, 1]| = |(𝑎, 𝑏]|. Similarly 𝑔 is defined by 𝑔(𝑥) = 𝑐 + (𝑑 − 𝑐)𝑥 which
is a injective function mapping (0, 1] onto (𝑐, 𝑑]. Following theorem 1.2, |(𝑎, 𝑏]| = |(𝑐, 𝑑]|

Theorem 1.2.6 The cardinality of the set of nonnegative real numbers is the same as the cardinality of the
unit interval [0, 1]

Proof: We aim to show the set 𝑆 = {𝑥 : 𝑥 ⩾ 1} has same cardinality as (0, 1].
Step 1.1: show surjectivity. Note that the function 𝑓 is defined by 𝑓 (𝑥) = 1

𝑥 maps 𝑆 into (0, 1]; for if
𝑥 ⩾ 1, then 1

𝑥 ⩽ 1. Also, 𝑓 maps 𝑆 onto (0, 1]; for if 𝑦 ∈ (0, 1],then 1
𝑦 ⩾ 1 and 𝑓 ( 1𝑦 ) = 𝑦.

Step 1.2: show injectivity. To see that 𝑓 is injective, suppose that 𝑓 (𝑥1) = 𝑓 (𝑥2), then 1
𝑥1

= 1
𝑥2
, so

𝑥1 = 𝑥2. Hence, 𝑓 is bijective. Thus, |𝑆| = |(0, 1].
Step 2 Now let 𝑇 = {𝑥 : 𝑥 ⩾ 0}. Define the function 𝑔 by 𝑔(𝑥) = 𝑥 − 1. Then 𝑔 is a bijective function
mapping 𝑆 → 𝑇. Hence, |𝑇| = |𝑆|. Thus, by theorem 1.2, |𝑇| = |(0, 1]. By theorem 1.2,

|[0, 1]| = |(0, 1]| ⇒ |𝑇| = |[0, 1]|

Theorem 1.2.7 The union of a countably many countable sets is countable

That is, if {𝑆𝑖 : 𝑖 ∈ ℕ} is a countable collection of sets and each 𝑆𝑖 is countable, then

𝑆 =

inf⋃
𝑖=1

𝑆𝑖

is countable.

The proof varies from the book

Proof: For each 𝑖 ∈ ℕ, since 𝑆𝑖 is countable, there exists a surjection

𝑓𝑖 : ℕ → 𝑆𝑖

Now defining a function

𝐹 : ℕ ×ℕ → 𝑆

𝐹(𝑖 , 𝑗) = 𝑓𝑖(𝑗)
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This is a surjection because for any 𝑠 ∈ 𝑆, exists 𝑠 ∈ 𝑆𝑘 for some 𝑘, so 𝑠 = 𝑓𝑘(𝑗) for some 𝑗. Hence
𝑠 = 𝐹(𝑘, 𝑗).
Step 1: Countability of ℕ×ℕ. Previously proven with Cantor’s pairing function that it’s countable.
We can define

𝑔 : ℕ ×ℕ → ℕ

𝑔(𝑖 , 𝑗) = (𝑖 + 𝑗 − 2)(𝑖 + 𝑗 − 1)
2

+ 𝑗

this function is a bijection, hence ℕ ×ℕ is countable.
Step 2: Composition. Since 𝑔 is bijective, it has an inverse 𝑓 = 𝑔−1 : ℕ → ℕ ×ℕ, by compositing it
with 𝐹 gives:

ℎ = 𝐹 ◦ 𝑓 : ℕ → 𝑆

Then ℎ is a surjection from ℕ → 𝑆. By definition, a set is countable is there is a surjection from ℕ onto
it. Thus, the function ℎ constructed above means that 𝑆 is countable.

Theorem 1.2.8 Cantor-Bernstein Theorem

If there are injections 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐴, then there exists a bijection ℎ : 𝐴→ 𝐵.
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Chapter 2

Week 2

Note:-

This is the end of contents in Rosenthal’s book. The following contents are mainly based on Spivak’s Calculus

Definition 2.0.1: Basic properties of numbers

The properties are listed in notes for Rudin’s analysis, rewritten in the format of

1. Associativity For any 𝑎, 𝑏, 𝑐 ∈ 𝐴 , 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

2. Additive identity There is 0 ∈ 𝐴 so that for any 𝑎 ∈ 𝐴, 0 + 𝑎 = 𝑎 + 0 = 𝑎

3. Additive inverse For any 𝑎 ∈ 𝐴, there is −𝑎 ∈ 𝐴 so that 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0

4. Commutativity For any 𝑎, 𝑏 ∈ 𝐴, 𝑎 + 𝑏 = 𝑏 + 𝑎

5. Associativity of multiplication For any 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐

6. Multiplicative identity There is 1 ∈ 𝐴, 1 ≠ 0 so that for any 𝑎 ∈ 𝐴, 1𝑎 = 𝑎1 = 𝑎

7. Multiplicative inverse For any 𝑎 ∈ 𝐴, 𝑎 ≠ 0, there is 𝑎−1 ∈ 𝐴 so that 𝑎𝑎−1 = 𝑎−1𝑎 = 1

8. Multiplicative commutativity For any 𝑎, 𝑏 ∈ 𝐴, 𝑎𝑏 = 𝑏𝑎

9. Distributive law For any 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎(𝑏 + 𝑐) = (𝑎𝑏) + (𝑎𝑐)

10. Trichotomy law Consider the collection of all positive numbers, 𝑃. For every number 𝑎, one and
only one of the following holds:

(a) 𝑎 = 0

(b) 𝑎 is in the collection 𝑃

(c) −𝑎 is in the collection 𝑃

11. Closure under addition If 𝑎 and 𝑏 are in 𝑃, then so is 𝑎 + 𝑏

12. Closure under multiplication If 𝑎 and 𝑏 are in 𝑃, then so is 𝑎 · 𝑏

𝑃 is the collection of all positive numbers.

Claim 2.0.1 If (𝐴,+) satisfies (1) − (3), then 0 is unique

Proof: Suppose 0̃ ∈ 𝐴 also satisfies the identity property, i.e.

𝑎 + 0̃ = 𝑎 = 0̃ + 𝑎 for all 𝑎 ∈ 𝐴.

10



Let 𝑎 ∈ 𝐴 be arbitrary. Then
𝑎 + 0̃ = 𝑎.

By property (3), the inverse −𝑎 exists. Adding −𝑎 to both sides gives

(−𝑎) + (𝑎 + 0̃) = (−𝑎) + 𝑎.

By associativity (1),
((−𝑎) + 𝑎) + 0̃ = (−𝑎) + 𝑎.

By property (3), (−𝑎) + 𝑎 = 0. Hence
0 + 0̃ = 0.

Finally, by the identity property (2),
0̃ = 0.

Thus the additive identity is unique.

Question 1

• uniqueness of −𝑎 ⇒ −(−𝑎) = 𝑎

• prove 0 · 𝑎 = 0 for all 𝑎 ∈ 𝐴

• prove 1 is unique

• (−𝑎) · 𝑏 = −(𝑎 · 𝑏)

• (−𝑎) · (−𝑏) = 𝑎 · 𝑏

Spivak’s numbers means a set that contains ℤ and satisfies (1)-(9).

Definition 2.0.2: Ordering or 𝐴

If 𝑎, 𝑏 ∈ 𝐴 and 𝐴, 𝑃 satisfies (10)-(12) then,

• 𝑎 > 𝑏 means 𝑎 + (−𝑏) ∈ 𝑃

• 𝑎 ⩾ 𝑏 means 𝑎 + (−𝑏) ∈ 𝑃 or 𝑎 + (−𝑏) = 0

• 𝑎 < 𝑏 means 𝑏 + (−𝑎) ∈ 𝑃

• 𝑎 ⩽ 𝑏 means 𝑏 + (−𝑎) ∈ 𝑃 or 𝑏 + (−𝑎) = 0

In particular, 𝑎 > 0 if and only if 𝑎 ∈ 𝑃.

Claim 2.0.2

Lemma 2.0.1 If 𝑎 ∈ 𝑃 ⇒ 𝑎 + 0 ∈ 𝑃

• If 𝑎 < 𝑏 and 𝑐 > 0 then 𝑎 · 𝑐 < 𝑏 · 𝑐

• If 𝑎 < 𝑏 and 𝑐 ∈ 𝐴 then 𝑎 + 𝑐 < 𝑏 + 𝑐

• If 𝑎 < 𝑏 and 𝑐 < 0 ⇒ 𝑎 · 𝑐 > 𝑏 · 𝑐

11



Proof: Proof of (2), from definition of <, 𝑎 < 𝑏 ⇒ 𝑏 + (−𝑎) ∈ 𝑃.

⇒ 𝑏 + (−𝑎) + 0 ∈ 𝑃
𝑏 + (−𝑎) + ((−𝑐) + 𝑐) ∈ 𝑃

(𝑏 + (−𝑐)) + ((−𝑎) + 𝑐) ∈ 𝑃
(𝑏 + (−𝑐)) + (−(𝑎 + (−𝑐))) ∈ 𝑃

Claim 2.0.3 If 0 < 𝑎 < 𝑏 ⇒ 𝑎2 < 𝑏2

Proof: Proof 1:

𝑏2 + (−𝑎2) = (𝑏 · 𝑏) + (−(𝑎 · 𝑎)) = (𝑏 + (−𝑎))(𝑏 + 𝑎)

Since 𝑏 > 𝑎, 𝑏 − 𝑎 > 0 and 𝑏 + 𝑎 > 0. This proves (𝑏 − 𝑎)(𝑏 + 𝑎) > 0 ⇒ (𝑏2 − 𝑎2) > 0 ⇒ 𝑏2 > 𝑎2

Proof 2:

𝑎2 < 𝑎 · 𝑏
𝑎 · 𝑏 < 𝑏2

𝑎2 < 𝑏2

Claim 2.0.4 If 𝑎 > 0, 𝑏 > 0, 𝑎2 < 𝑏2 ⇒ 𝑎 < 𝑏

Claim 2.0.5 If 𝑎 < 𝑏 then 𝑎3 < 𝑏3

Claim 2.0.6 If 0 < 𝑎 < 𝑏, 𝑎, 𝑏 ∈ ℝ, then 𝑎 <
√
𝑎 · 𝑏 < 𝑎−𝑏

2 < 𝑏

Assume that for any 𝑐 > 0, 𝑐 ∈ ℝ there is a unique 𝑑 ∈ ℝ, 𝑑 > 0 so that 𝑑2 = 𝑐, call 𝑑 ”
√
𝑐”.
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Chapter 3

Week 3

3.1 Peano Axiom

The Peano’s axioms are proposed by Giuseppe Peano (1889) to rigorously define the natural numbers ℕ =

{0, 1, 2, 3, ...} and their arithmetic.

Definition 3.1.1: Natural numbers

The natural numbers ℕ are a set equipped with a successor operation 𝑆 : ℕ → ℕ such that the following
Peano axioms hold:

1. Existence of the first element: 1 is a natural number.

2. Successor property: If 𝑛 ∈ ℕ, then 𝑆(𝑛) ∈ ℕ.

3. Injectivity of successor: If 𝑚, 𝑛 ∈ ℕ and 𝑆(𝑚) = 𝑆(𝑛), then 𝑚 = 𝑛.

4. Non-predecessorship of 1: There is no 𝑛 ∈ ℕ such that 𝑆(𝑛) = 1.

5. Induction axiom: If 𝐴 ⊆ ℕ such that 1 ∈ 𝐴, and whenever 𝑛 ∈ 𝐴 implies 𝑆(𝑛) ∈ 𝐴, then 𝐴 = ℕ.

Using these axioms, we can define addition and multiplication recursively via 𝑆.

Note:-

Peano originally had ℕ start with 1, later ℕ started with 0. We take ℕ start with 1 for the course.

3.2 Induction

Here are some examples for mathematical induction during lecture:

Example 3.2.1 (For all 𝑛 ∈ ℕ: 2 + 4 + 6 + ... + 2𝑛 = 𝑛(𝑛 + 1))
The ideas:

• Let 𝐾 = {𝑛 ∈ ℕ, 2 + 4 + ... + 2𝑛 = 𝑛(𝑛 + 1)}
• show 1 ∈ 𝐾
• assume 𝑛 ∈ 𝐾 show 𝑛 + 1 ∈ 𝐾
• Conclude 𝐾 = ℕ by peano axiom that 𝑆(𝑛) = 𝑛 + 1

Proof: Let 𝐾 = {𝑛 ∈ ℕ, 2 + 4 + ... + 2𝑛 =
∑𝑛
𝑖=1 2𝑖 = 𝑛(𝑛 + 1)}. Take 𝑛 = 1, then 2 = 1(1 + 1) is true. So

1 ∈ 𝐾.
Assume 𝑛 ∈ 𝐾,

2 + 4 + 6 + ... + 2𝑛 + 2(𝑛 + 1) = 𝑛(𝑛 + 1) + 2(𝑛 + 1)
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because 𝑛 ∈ 𝐾
So

2 + 4 + .... + 2(𝑛 + 1) = (𝑛 + 1)((𝑛 + 1) + 1)
is true, and so 𝑛 + 1 ∈ 𝐾. Therefore 𝐾 satisfies Peano axiom 5, and so 𝐾 = ℕ.

Example 3.2.2

Let 𝑎 ∈ ℝ with −𝑘 < 𝑎 < 0 and 𝑎 < −1 For all 𝑛 ∈ ℕ

(1 + 𝑎)𝑛 < 1 + 𝑛𝑎 + 𝑛2𝑎2

2

Proof: Let

𝐾 = {𝑛 ∈ ℕ : (1 + 𝑎)𝑛 < 1 + 𝑛𝑎 + 𝑛2𝑎2

2
}

We first show 1 ∈ 𝐾,
(1 + 𝑎) < 1 + 1 · 𝑎 + 12𝑎2

2

because 12𝑎2

2 > 0 and 𝑎 ≠ 0. Therefore 1 ∈ 𝐾.
Assume 𝑛 ∈ 𝐾, so

(1 + 𝑎)𝑛 < 1 + 𝑛𝑎 + 𝑛2𝑎2

2

We want to show that 𝑛 + 1 ∈ 𝐾.

(1 + 𝑎)𝑛+1 = (1 + 𝑎)𝑛(1 + 𝑎) < (1 + 𝑛𝑎 + 𝑛2𝑎2

2
)(1 + 𝑎)

because 𝑛 ∈ 𝐾 and 1 + 𝑎 > 0. By expanding product,

(1 + 𝑎)𝑛+1 < 1 + (𝑛 + 1)𝑎 + 𝑛𝑎2 + 𝑛2𝑎2

2
+ 𝑛2𝑎3

2

= 1 + (𝑛 + 1)𝑎 + (𝑛 + 1)2𝑎2
2

− (𝑛 + 1)2𝑎2
2

+ 𝑛𝑎2 + 𝑛2𝑎2

2
+ 𝑛2𝑎2

3

by several steps of deduction, = 1 + (𝑛 + 1)𝑎 + (𝑛 + 1)2𝑎2
2

+ 𝑎2(𝑎𝑛2 − 1)
2

⩽ 1 + (𝑛 + 1)𝑎 + (𝑛 + 1)2𝑎2
2

because 𝑎 < 0 ⇒ 𝑎2(𝑎𝑛2−1)
2 < 0. Therefore 𝑛 + 1 ∈ 𝐾 and 𝐾 = ℕ

Theorem 3.2.1 (AM–GM Inequality)

Let 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 ≥ 0. Then
𝑥1 + 𝑥2 + · · · + 𝑥𝑛

𝑛
≥ 𝑛

√
𝑥1𝑥2 · · · 𝑥𝑛 ,

with equality if and only if 𝑥1 = 𝑥2 = · · · = 𝑥𝑛 .

Proof: We proceed by induction on 𝑛.
Base case: 𝑛 = 1. Trivially 𝑥1

1 = 𝑥1 = 1
√
𝑥1.

Base case: 𝑛 = 2. We need to show
𝑥1 + 𝑥2

2
≥ √

𝑥1𝑥2.

Consider the nonnegative square

0 ≤ (𝑥1 − 𝑥2)2 = 𝑥21 − 2𝑥1𝑥2 + 𝑥22 .
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Rearrange:
𝑥21 + 2𝑥1𝑥2 + 𝑥22 ≥ 4𝑥1𝑥2 =⇒ (𝑥1 + 𝑥2)2 ≥ 4𝑥1𝑥2.

Taking the positive square root (since both sides are nonnegative) and then dividing by 2 gives the desired
inequality. Equality holds only when (𝑥1 − 𝑥2)2 = 0, i.e. 𝑥1 = 𝑥2.
Induction step. Assume the result holds for all lists of length 𝑛. Let 𝑥1 , 𝑥2 , . . . , 𝑥𝑛+1 ≥ 0. Write

𝛼 =
𝑥1 + · · · + 𝑥𝑛+1

𝑛 + 1
.

If all 𝑥𝑖 = 𝛼, then both sides (AM and GM) equal 𝛼, and the result holds with equality. Otherwise, not all
𝑥𝑖 are equal.
We can reorder so that 𝑥𝑛+1 is one of the “extreme” elements, and consider the first 𝑛 elements 𝑥1 , . . . , 𝑥𝑛 .
By the induction hypothesis,

𝑥1 + · · · + 𝑥𝑛
𝑛

≥ 𝑛
√
𝑥1𝑥2 · · · 𝑥𝑛 .

Now compare the arithmetic mean of all 𝑛 + 1 with the geometric mean:

𝛼 =
1

𝑛 + 1
(𝑥1 + · · · + 𝑥𝑛 + 𝑥𝑛+1) =

𝑛

𝑛 + 1
· 𝑥1 + · · · + 𝑥𝑛

𝑛
+ 1

𝑛 + 1
𝑥𝑛+1.

Applying the (already established) two–term AM–GM to the two numbers

𝑥1 + · · · + 𝑥𝑛
𝑛

and 𝑥𝑛+1 ,

we get

1

2

(
𝑥1 + · · · + 𝑥𝑛

𝑛
+ 𝑥𝑛+1

)
≥
√
𝑥1 + · · · + 𝑥𝑛

𝑛
· 𝑥𝑛+1.

One arranges the coefficients so that this gives

𝛼 ≥ 𝑛+1√𝑥1𝑥2 · · · 𝑥𝑛+1.

A more detailed algebraic manipulation is usually given in textbooks (or see the Wikipedia “induction
proof” section). Equality can hold only if each inequality used in the induction is an equality, which forces
𝑥1 = · · · = 𝑥𝑛+1.

Theorem 3.2.2 (AM–GM an alternative proof)

For any 𝑛 ∈ ℕ and any positive real numbers 𝑏1 , . . . , 𝑏𝑛 ,

𝑏1 + · · · + 𝑏𝑛
𝑛

≥ (𝑏1𝑏2 · · · 𝑏𝑛)1/𝑛 ,

with equality iff 𝑏1 = · · · = 𝑏𝑛 .

Proof: We split the proof in two steps.

Step 1 (Inductive lemma for product = 1). Claim. If 𝑎1 , . . . , 𝑎𝑛 > 0 and 𝑎1 · · · 𝑎𝑛 = 1, then

𝑎1 + · · · + 𝑎𝑛 ≥ 𝑛,

with equality iff 𝑎1 = · · · = 𝑎𝑛 = 1.

Proof by induction on 𝑛.

• Base 𝑛 = 1. From 𝑎1 · 1 = 1 we get 𝑎1 = 1, hence 𝑎1 ≥ 1 with equality.

• Inductive step. Assume the statement holds for some 𝑛 ≥ 1. Let 𝑎1 , . . . , 𝑎𝑛+1 > 0 satisfy
𝑎1 · · · 𝑎𝑛+1 = 1. Reindex so that

𝑎𝑛 = min{𝑎1 , . . . , 𝑎𝑛+1} and 𝑎𝑛+1 = max{𝑎1 , . . . , 𝑎𝑛+1}.
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Because the product is 1, we must have 𝑎𝑛 ≤ 1 ≤ 𝑎𝑛+1. Hence

(𝑎𝑛 − 1)(𝑎𝑛+1 − 1) ≤ 0 =⇒ 𝑎𝑛 + 𝑎𝑛+1 ≥ 1 + 𝑎𝑛𝑎𝑛+1. (∗)

Now define the 𝑛–tuple
𝑏1 , . . . , 𝑏𝑛−1 , 𝑏𝑛 := 𝑎1 , . . . , 𝑎𝑛−1 , 𝑎𝑛𝑎𝑛+1.

Then 𝑏1 · · · 𝑏𝑛 = (𝑎1 · · · 𝑎𝑛−1)(𝑎𝑛𝑎𝑛+1) = 𝑎1 · · · 𝑎𝑛+1 = 1. By the inductive hypothesis,

𝑎1 + · · · + 𝑎𝑛−1 + 𝑎𝑛𝑎𝑛+1 ≥ 𝑛. (†)

Adding (∗) and (†) gives

𝑎1 + · · · + 𝑎𝑛+1 =
(
𝑎1 + · · · + 𝑎𝑛−1 + 𝑎𝑛𝑎𝑛+1

)
+
(
𝑎𝑛 + 𝑎𝑛+1 − 𝑎𝑛𝑎𝑛+1

)
≥ 𝑛 + 1.

Equality case. In (∗) equality forces 𝑎𝑛 = 1 and 𝑎𝑛+1 = 1; then (†) forces 𝑎1 = · · · = 𝑎𝑛−1 = 1 by the
inductive hypothesis. Thus equality holds iff all 𝑎𝑖 = 1.

This completes the induction and proves the claim. △
Step 2 (Normalization and conclusion). Let 𝑏1 , . . . , 𝑏𝑛 > 0 and set

𝐺 := (𝑏1𝑏2 · · · 𝑏𝑛)1/𝑛 , 𝑎𝑖 :=
𝑏𝑖

𝐺
(1 ≤ 𝑖 ≤ 𝑛).

Then 𝑎1 · · · 𝑎𝑛 =
𝑏1···𝑏𝑛
𝐺𝑛 = 1, so the lemma yields

𝑛∑
𝑖=1

𝑎𝑖 =

𝑛∑
𝑖=1

𝑏𝑖

𝐺
≥ 𝑛.

Multiplying by 𝐺 gives
𝑏1 + · · · + 𝑏𝑛 ≥ 𝑛 𝐺 = 𝑛 (𝑏1𝑏2 · · · 𝑏𝑛)1/𝑛 ,

and dividing by 𝑛 proves AM–GM.
Equality case. Equality in Step 1 requires 𝑎1 = · · · = 𝑎𝑛 = 1, i.e. 𝑏1 = · · · = 𝑏𝑛 = 𝐺.
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Definition 3.2.1: Comparison: Standard vs. Strong Induction

Standard (Weak) Induction. To prove a statement 𝑃(𝑛) for all 𝑛 ⩾ 𝑛0:

• Base case: Show 𝑃(𝑛0) is true.

• Inductive step: Assume 𝑃(𝑘) is true for some 𝑘 ⩾ 𝑛0 (the induction hypothesis). Prove 𝑃(𝑘 + 1) is
true.

Here the hypothesis only assumes 𝑃(𝑘) to prove 𝑃(𝑘 + 1).
Strong Induction. To prove a statement 𝑃(𝑛) for all 𝑛 ⩾ 𝑛0:

• Base case: Show 𝑃(𝑛0) is true (and sometimes 𝑃(𝑛0 + 1), . . . , 𝑃(𝑛0 + 𝑟) depending on the problem).

• Inductive step: Assume 𝑃(𝑛0), 𝑃(𝑛0 + 1), . . . , 𝑃(𝑘) are all true (the strong induction hypothesis).
Prove 𝑃(𝑘 + 1) is true.

Here the hypothesis allows you to assume all earlier cases up to 𝑘, not just the immediate predecessor.

Summary.

• Standard induction: assume 𝑃(𝑘) to prove 𝑃(𝑘 + 1).

• Strong induction: assume all 𝑃(𝑗) for 𝑛0 ⩽ 𝑗 ⩽ 𝑘 to prove 𝑃(𝑘 + 1).

• Both principles are logically equivalent, but strong induction is often easier when 𝑃(𝑘 + 1) depends
on several earlier cases.

Definition 3.2.2: Fundamental Theorem of Arithmetic

If 𝑛 ∈ ℕ, 𝑛 ⩾ 2 can be written as a product of primes.

Proof: We proceed by strong induction on 𝑛.
Base case (𝑛 = 2). 2 is prime, so it is already a product of primes (just itself).
Induction hypothesis. Assume that every integer 𝑚 with 2 ⩽ 𝑚 ⩽ 𝑘 can be written as a product of
primes.
Inductive step. We prove the statement for 𝑘 + 1.

• If 𝑘 + 1 is prime, then it is its own prime factorization.

• If 𝑘 + 1 is composite, then there exist integers 𝑎, 𝑏 with 2 ⩽ 𝑎, 𝑏 ⩽ 𝑘 such that 𝑘 + 1 = 𝑎𝑏. By
the induction hypothesis, both 𝑎 and 𝑏 can be written as products of primes. Multiplying these
factorizations gives a prime factorization of 𝑘 + 1.

Conclusion. By the principle of strong induction, every 𝑛 ⩾ 2 has a prime factorization.

3.2.1 Recursion Relations

Example 3.2.3 (Recursion Relations)

Generate a sequence {𝑐1 , 𝑐2 , . . . } ⊆ ℕ as follows:

𝑐1 = 0, 𝑐2 = 1, 𝑐𝑛+1 = 5𝑐𝑛 − 6𝑐𝑛−1 (𝑛 ⩾ 2).

Claim 3.2.1

For all 𝑛 ⩾ 1, the closed form is
𝑐𝑛 = 3 𝑛−1 − 2 𝑛−1.

Proof: We proceed by induction on 𝑛.
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Base cases. For 𝑛 = 1: 𝑐1 = 0, and the formula gives 30 − 20 = 1 − 1 = 0. For 𝑛 = 2: 𝑐2 = 1, and the
formula gives 31 − 21 = 3 − 2 = 1. So the formula holds for 𝑛 = 1, 2.
Induction hypothesis. Assume for some 𝑛 ⩾ 2 that

𝑐𝑛 = 3 𝑛−1 − 2 𝑛−1 , 𝑐𝑛−1 = 3 𝑛−2 − 2 𝑛−2.

Inductive step. Using the recurrence:

𝑐𝑛+1 = 5𝑐𝑛 − 6𝑐𝑛−1.

Substitute the hypothesis:
𝑐𝑛+1 = 5(3 𝑛−1 − 2 𝑛−1) − 6(3 𝑛−2 − 2 𝑛−2).

Simplify:
= 5 · 3 𝑛−1 − 5 · 2 𝑛−1 − 6 · 3 𝑛−2 + 6 · 2 𝑛−2.

Factor powers:
= 3 𝑛−2(15 − 6) − 2 𝑛−2(10 − 6) = 9 · 3 𝑛−2 − 4 · 2 𝑛−2.

= 3 𝑛 − 2 𝑛 .

Thus the formula holds for 𝑛 + 1.
Conclusion. By induction, the closed form 𝑐𝑛 = 3 𝑛−1 − 2 𝑛−1 is valid for all 𝑛 ⩾ 1.

Example 3.2.4 (Binary Strings of length m)

How many binary strings of length 𝑛 has 𝑘 1s?

𝐵𝑘,𝑚 = number of binary strings with 𝑘 1s

Example 3.2.5

Consider path that go north by length 1 or go northeast with length
√
2. How many ways can you go from

(0, 0) to (𝑛, 𝑘), 𝑛, 𝑘 ∈ ℕ?

𝑊𝑘,𝑛 = number of such path from (0, 0) to (𝑘, 𝑛)

𝑊𝑘,𝑛 =𝑊𝑘,𝑛−1 +𝑊𝑘−1,𝑛−1 𝑊0,𝑛 = 1,𝑊𝑘,0 = 0(𝑘 > 0)

Example 3.2.6

Let 𝐴𝑘,𝑛 be the number (equivalently, the coefficient) of the term 𝑥𝑘𝑦 𝑛−𝑘 in the expansion of (𝑥 + 𝑦)𝑛 .
Claim. 𝐴𝑘,𝑛 =

(
𝑛
𝑘

)
for 0 ≤ 𝑘 ≤ 𝑛 (and 𝐴𝑘,𝑛 = 0 otherwise).

Reason 1 (Combinatorial). In (𝑥 + 𝑦)𝑛 , to get 𝑥𝑘𝑦 𝑛−𝑘 you must choose exactly 𝑘 of the 𝑛 factors to
contribute an 𝑥 (the others contribute 𝑦). There are

(
𝑛
𝑘

)
such choices.

Reason 2 (Pascal recurrence). Define 𝐴𝑘,1 from (𝑥 + 𝑦)1 = 𝑥 + 𝑦: 𝐴0,1 = 1, 𝐴1,1 = 1. Multiply by
(𝑥 + 𝑦) to go from 𝑛 to 𝑛 + 1:

(𝑥 + 𝑦)𝑛+1 = (𝑥 + 𝑦)(𝑥 + 𝑦)𝑛 .
The coefficient of 𝑥𝑘𝑦 (𝑛+1)−𝑘 in (𝑥 + 𝑦)𝑛+1 comes from: - taking 𝑥 and the term 𝑥𝑘−1𝑦 𝑛−(𝑘−1) from (𝑥 + 𝑦)𝑛
(count 𝐴𝑘−1,𝑛 ways), - taking 𝑦 and the term 𝑥𝑘𝑦 𝑛−𝑘 from (𝑥 + 𝑦)𝑛 (count 𝐴𝑘,𝑛 ways).
Thus

𝐴𝑘,𝑛+1 = 𝐴𝑘−1,𝑛 + 𝐴𝑘,𝑛 for 1 ≤ 𝑘 ≤ 𝑛,

with edge conditions
𝐴0,𝑛 = 1, 𝐴𝑛,𝑛 = 1.

This is Pascal’s triangle, so 𝐴𝑘,𝑛 =
(
𝑛
𝑘

)
.
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Conclusion. The number of terms of the form 𝑥𝑘𝑦 𝑛−𝑘 in (𝑥 + 𝑦)𝑛 (i.e., its coefficient) is

𝐴𝑘,𝑛 =

(
𝑛

𝑘

)
.

Example 3.2.7

How many subsets of size 𝑘 does {1, 2, . . . , 𝑛} have?
Solution. A subset of size 𝑘 is obtained by choosing exactly 𝑘 distinct elements from the 𝑛-element set.
The number of ways to do this is the binomial coefficient(

𝑛

𝑘

)
=

𝑛!

𝑘!(𝑛 − 𝑘)! .

Reasoning. Each subset of size 𝑘 corresponds to a 𝑘-element combination out of 𝑛. Order does not
matter, so we divide out the 𝑘! permutations of the chosen elements.
Conclusion. The set {1, 2, . . . , 𝑛} has (

𝑛

𝑘

)
distinct subsets of size 𝑘.

Theorem 3.2.3

If 𝑆𝑘,𝑛 is the kth entry in the (𝑛+1)st rows of pascal’s triangle then 𝑆𝑘,𝑛 = 𝑛!
𝑘!(𝑛−𝑘)! . We also write 𝑆𝑘,𝑛 =

(
𝑛
𝑘

)
,

and we say ”𝑛 choose 𝑘”.

Proof: By induction,

𝑃(𝑛) = ”For all 𝑘 ∈ {0, ..., 𝑛} the kth entry in the (𝑛 + 1)st row of Pascals triangle equals:

𝑛!

𝑘!(𝑛 − 𝑘)!

Note:-

(P1)-(P12) are satisfied by both ℚ and ℝ

Lemma 3.2.1

1. 𝑛 ∈ ℕ ⇒ 𝑛 is even or odd

2. 𝑛 even ⇒ 𝑛2 even

3. 𝑛 odd ⇒ 𝑛2 odd

4. 𝑛2 even ⇒ 𝑛 even

5. 𝑛2 odd ⇒ 𝑛 odd

Claim 3.2.2√
2 is not rational.

The proof is in notes for baby rudin.
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Chapter 4

Week 3

4.1 Supremum axiom

Note:-

This section covered in baby Rudin notes. The following are course notes

Idea: Given a set that has an ordering, we should be able to talk about upper bounds, lower bounds, least
upper bounds, greatest lower bounds.

Example 4.1.1

𝐴 = {2𝑛 : 𝑛 ∈ ℕ } ⊆ ℤ ℤ has ordering

• upperbounds:

• lowerbounds: 2,-5,

Example 4.1.2 (special case)

𝐴 = ∅ ⊂ ℚ

• GLB LUB doesn’t exist

• upperbound & lowerbound: ℚ

Definition 4.1.1: Spivak

𝐴 ⊆ ℝ is bounded above if there is an 𝑥 ∈ ℝ so that 𝑥 ⩾ 𝑎 for all 𝑎 ∈ 𝐴 such an 𝑥 is called an upper
bound of 𝐴.

Definition 4.1.2: Spivak

𝐴 ⊆ ℝ, 𝑥 ∈ ℝ is a least upper bound of 𝐴 if

• 𝑥 is an upper bound of 𝐴

• 𝑦 is an upper bound of 𝐴 then 𝑥 ⩽ 𝑦

We write 𝑥 = lub𝐴 or we write 𝑥 = sup𝐴.
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Theorem 4.1.1

If 𝐴 has a least upper bound, then it’s unique.

Proof: Assume 𝑥 and 𝑦 are both 𝐿𝑈𝐵.

• 𝑥 ⩽ 𝑦 because 𝑦 is an upper bound and 𝑥 is a least upper bound.

• 𝑦 ⩽ 𝑥 because 𝑥 is an upper bound and 𝑦 is a least upper bound.

Therefore 𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑥, so 𝑥 = 𝑦.

Note:-

For quiz, do this with properties (P10-12)

Definition 4.1.3: (P13) Least upper bound property

For 𝐴 ⊆ ℝ and 𝐴 is not empty. If 𝐴 is bounded above then 𝐴 has least upper bound. ℝ with usual
ordering satisfies (𝑃13).

Definition 4.1.4

For a ordered field, 𝑎 is positive if 𝑎 ∈ 𝑃. 𝑎 is negative if −𝑎 ∈ 𝑃. Else, 𝑎 is 0.

Claim 4.1.1 Natural numbers are not bounded above ℝ

Proof: Suppose, for contradiction, that ℕ is bounded above in ℝ. Let 𝑠 = supℕ (least upper bound),
which exists by completeness of ℝ.
Since 𝑠 − 1 is not an upper bound, there exists 𝑚 ∈ ℕ with

𝑚 > 𝑠 − 1.

But then
𝑚 + 1 ∈ ℕ and 𝑚 + 1 > 𝑠,

which contradicts that 𝑠 is an upper bound for ℕ.
Hence ℕ has no upper bound in ℝ.

21


	Contents
	0.1 Introduction
	1 Week 1
	1.1 Cardinality
	1.2 Countable Sets and Uncountable Sets

	2 Week 2
	3 Week 3
	3.1 Peano Axiom
	3.2 Induction
	3.2.1 Recursion Relations


	4 Week 3
	4.1 Supremum axiom


