MAT 240 Algebra I

Brian Zu

2025 Fall

Contents

	0.1	Introduction	2	
Chapter 1		Week 1	Page 3_	
	1.1	Sets, Functions, Fields	3	
Chapter 2		Week 2	Page 8_	
	2.1	Modular Arithmetic	8	
Chapter 3		Week 3	Page 10_	
-	3.1	Vector Space	10	
	3.2	Linear combination	13	
	3.3	Span	13	
	3.4	Linear Independence/Dependence	14	
	3.5	Bases	15	
Chapter 4		Tutorial	Page 18_	
-	4.1	Week 2 tutorial (i) $\mathbb{Q}^{\sqrt{3}}$ is a field — $18 \bullet$ (ii) $\varphi(a+b\sqrt{3})=a-b\sqrt{3}$ is a field isomorphism — $19 \bullet$ (iii) Minimal \bullet (iv) Interpretation in terms of splitting fields — 19	18	

0.1 Introduction

The course is mainly based on the book $Linear\ Algebra\ 4th\ edition\ by\ S.H.Friedberg,$ coupled with $A\ Readable\ Introduction\ to\ Real\ Mathematics\$ by F. Su

Chapter 1

Week 1

1.1 Sets, Functions, Fields

Definition 1.1.1: Sets

A set is a collection of elements. If x is in the set S, we write $x \in S$. If not, we write $x \notin S$. Two ways of defining a set:

1. Listing the objects in that set

$$S = \{1, 2, 3, 6\} = \{2, 1, 3, 6\}$$

Note:- Note that the order of elements does not matter, and repeated elements are only listed once.

2. Describing or characterizing the elements of S

$$A = \{x : x \text{ is a positive integer dividing 6}\}$$

Note:-
$$A = S$$

Example 1.1.1

$$P = \{x : x \text{ is a prime nuber}\}$$

- \bullet Z integers
- \bullet Q the rational numbers
- \bullet R the real numbers

Two sets are equal if they contain the same elements if S and T and equal, we write S = T

Example 1.1.2

$$B = \{-1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

 $C = \{2, 3\} = \{x : x \text{ is an integer between } 2\&3\}$

Definition 1.1.2: Subset

If S and T are set such that all elements of s are contained in T, we say that S is a subset of T and we write $S \subset T$

If S is a subset of T and $S \neq T$, we write $S \subsetneq T$ and say that S is a proper subset of T

Definition 1.1.3: Empty Set

The empty set is the set containing no elements, denoted by \emptyset or $\{\}$. If S and T are sets. $S \cup T = \{x : x \in S \text{ or } x \in T\}$ is called the **union** of S and T. $S \cap T = \{x : x \in S \text{ and } x \in T\}$ is called the intersection of S and T.

Example 1.1.3

$$N = \{x \in \mathbb{Z} : x > 0\} = \{1, 2, 3, 4...\}$$

Let $-N=\{x\in\mathbb{Z}:x<0\}=\{-1,-2,-3,-4...\}$ then $N\cap -N=\emptyset$ and $N\cup -N=\{x\in\mathbb{Z}:x\neq 0\}.$ If we have a list $S_1,...,S_k$ of sets, we can write

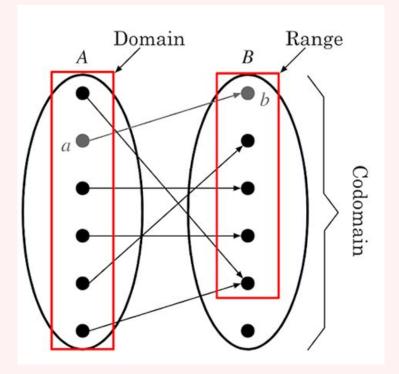
$$\bigcup_{i=1}^k S_i = \{x: x \in S_i \text{ for at least one of the } S_i, i=1,...,k\}$$

$$\bigcap_{i=1}^k S_i = \{x : x \in S_i \text{ for all of the } S_i, i = 1, ..., k\}.$$

Definition 1.1.4: Function

Consider two sets A and B, and suppose that with each element x of A there is associated, in some manner, an element of B, which denoted by f(x). Then f is said to be a function from A to B, denoted by $f:A \to B$.

- The set A is called the **domain** of f
- The set B is called the **codomain** of f
- The elements f(x) are called the values of f
- The set of all values of f is called the **range** of f



If $E \subset A$, f(E) is defined to be the set of all elements f(x), for $x \in E$. We call f(E) the **image** of E under f. If $E \subset B$, $f^{-1}(E)$ denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the **preimage** of E under f.

Definition 1.1.5: Equality of functions

Two functions $f,g:S\to T$ are equal if f(x)=g(x) for all $x\in S$

Example 1.1.4

For example, let $S = \{x \in \mathbb{R} : |x| \ge 1\}$ $f: S \to \mathbb{R}$ is the function s.t. $f(x) = \frac{1}{x^2}$. Then

- \bullet domain is S
- ullet codomain is ${\mathbb R}$
- range is $\{x \in \mathbb{R} : 0 < x < 1\} \subset \mathbb{R}$

Definition 1.1.6: Injective, surjective, and bijective

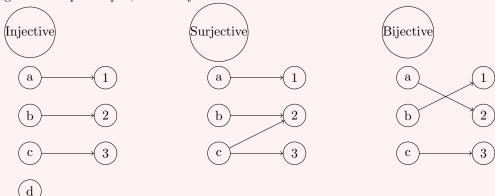
If every element is the range of f has a unique preimage, we say that f is **injective** or one-to-one. In notation:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

A counter example would be $f(x) = x^2$. If every element in the codomain is in the image, we say that f is **surjective** (onto). In other words, the range equals the codomain. In notation:

$$\forall y \in B, \exists x \in A \text{ such that } f(x) = y$$

If f is surjective and injective, we say that F is bijective or a bijection. It's perfect pairing — each input gives a unique output, and every element of the codomain is used.



If $f: S \to T$ and $U \subset S$ the **restriction** of f to U is denoted $f|_{U}: U \to T$. $f|_{U}(u) = f(u)$ for all $u \in U$

Example 1.1.5

Let $f: \mathbf{Z} \to \mathbf{N}$ be defined by f(x) = |x| + 1. Then f is surjective but not injective. The function $f|_{\mathbf{N}}$ is injective but not surjective because 1 is in it's range but doesn't have a preimage. Let $\mathbf{Z}_{\geq 0} = \{x \in \mathbf{Z} : x \geq 0\}$. Then $f|_{\mathbf{z} \geq 0}$ is both injective and surjective, hence a bijection.

Example 1.1.6 (Composite functions)

let S, T, U as sets,

$$f: S \to T, g: T \to U$$

The composite $g \circ f : S \to U$.

Note:-

Note that given S,T and $f,g:S\to S.$ $f\circ g$ doesn't necessarily equal to $g\circ f.$ For example f(x)=x+1 and g(x)=2x.

Example 1.1.7

Exercise: check that f, g is invertible and $s \in S, f^{-1}(s)$.

Is $f : \mathbb{R} \to \mathbb{R}$ invertible?

f(x) = 3x + 1 has inverse g(x) = (x - 1)/3 Is $f : \mathbb{Z} \to \mathbb{Z}$ invertible?

For f(z) = 3z + 1, the inverse g(x) = (x - 1)/3 will make some of the output not integers. For example f(g(2)).

Question 1

Exercise: how to prove a function is invertible if it's bijective?

Note:-

The definition of field and properties are noted down in note for baby Rudin, thus disregard.

Definition 1.1.7: Equivalence relations

- F(1) Commutativity a + b = b + a and $a \cdot b = b \cdot a$
- F(2) Associativity (a + b) + c = a + (b + c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- F(3) Existence of Identity Elements There exists elements $0 \in F$ and $1 \in F$ such that 0 + a = a and $1 \cdot a = a$. 0 is called the **additive identity** and 1 is the **multiplicative identity**. Note that $0 \neq 1$
- F(4) Existence of Inverses For each $a \in F$ there exists $b \in F$ and nonzero $c \in F$ such that a + b = 0 and $a \cdot c = 1$
- F(5) **Distributivity** $a \cdot (b + c) = ab + ac$

Definition 1.1.8: Equivalence relations

Let S be a set. A relation on S is a subset $R \subset S \times S$. We say a pair $(x, y) \in S \times S$ satisfies the notation if $(x, y) \in \mathbb{R}$. We typically denote the relation \sim and while $x \sim y$ if $(x, y) \in R$. For example \sim could be =

Definition 1.1.9

A relation on S is an equivalence relation if it satisfies the following 3 properties $\forall x, t \in S$

- $s \sim s$
- $s \sim t \Rightarrow t \sim s$
- $s \sim t$ and $t \sim u \Rightarrow s \sim u$

Definition 1.1.10

If (s, \sim) is a set equipped with a equivalence relation and $t \in S$, let $C_t = \{s \in S : s \sim t\}$

Theorem 1.1.1

Let (s, \sim) is a set equipped with an equivalence relation, then $\exists T \subset S$ such that

- $S = \bigcup_{t \in T} C_t$
- $C_t \cap C_{t'} = \emptyset$ if $t \neq t'$

We call T a set of representation for \sim

Chapter 2

Week 2

2.1 Modular Arithmetic

Definition 2.1.1

Let $m \in \mathbb{N}$. Let $a, b \in \mathbb{Z}$. We say that a is congruent to b (mod m), denoted $a \equiv b \pmod{m}$. If $m \mid (b-a)$.

Example 2.1.1

Let a = 3, b = 45. Then $a \equiv b \mod 2$ and $\mod 3$

Lemma 2.1.1 $a \equiv b(m)$ if and only if (iff) there exists $k \in \mathbb{Z}$ such that a = b + km.

Proof: Suppose $a \equiv b(m)$ then by definition m|b-a. This means that b-a is a multiple of m, so it can be written as b-a=mk for some $k \in \mathbb{Z}$. Rearranging, we have b=a+mk or a=b+(-k)m. -k is our desired multiple.

From another direction, suppose that a = b + mk then b - a = -mk which is divisible by m. By definition, $a \equiv b(m)$.

Theorem 2.1.1 Let $m \in \mathbb{N}$. For each $a \in \mathbb{Z}$, there exists a unique $r \in \{0, \dots, m-1\}$ such that $a \equiv r \pmod{m}$.

Proof: We will prove that there exist unique integers k, r such that a = km + r with $0 \le r < m$. By a previous lemma, this implies $a \equiv r \pmod{m}$.

Existence. Consider all multiples of m, $\{0, \pm m, \pm 2m, \dots\}$, which cover the real line by the Archimedean property. Since a is an integer, there exists k such that

$$km \le a < (k+1)m$$
.

Subtracting km gives $0 \le a - km < m$. Define r = a - km, then a = km + r with $0 \le r < m$.

Uniqueness. Suppose a = km + r = k'm + r' with $0 \le r, r' < m$. Then r - r' = (k' - k)m, so r - r' is a multiple of m. On the other hand, since both r and r' lie in [0, m), their difference satisfies

$$-m < r - r' < m$$
.

(2)

The only multiple of m in this range is 0, hence $r - r' = 0 \implies r = r'$ and then k = k'.

For the equivalence relation of congruence modulo m, we have

$$\mathbb{Z} = C_0 \cup C_1 \cup \cdots \cup C_{m-1}$$
,

where $C_r = \{a \in \mathbb{Z} : a \equiv r \pmod{m}\}$. We call $\{0, \ldots, m-1\}$ the standard representatives.

Theorem 2.1.2 If $a \equiv b(m)$ and $c \equiv d(m)$, then $a + c \equiv b + d(m)$, $a \cdot c \equiv b \cdot d(m)$

Proof: By lemma, a = b + km, c = d + k'm.

$$a + c = b + km + d + k'm = b + d + (k + k')m \equiv b + d(m)$$

$$a \cdot c = (b + km)(d + k'm) = bd + kmd + k'mb + kk'm^2 = bd + m(kd + k'b + kk'm) \equiv bd(m)$$

⊜

Definition 2.1.2

The integers modulo m, denoted $\mathbb{Z}/m\mathbb{Z}$ is the set of equivalence classes mod m. We will denote it $\mathbb{Z}/m\mathbb{Z} = \{\bar{0}, \bar{1}, ..., m-1\}$. Thanks to the last theorem, $\mathbb{Z}/m\mathbb{Z}$ is equipped with addition and multiplication. Regular reputation in $\mathbb{Z}+$ remainder after division by m.

Definition 2.1.3

A prime number is $p \in \mathbb{N}$, p > 1, and s.t. For all $x, y \in \mathbb{Z}$, if $p \nmid x, p \nmid y \Rightarrow p \nmid xy$

Theorem 2.1.3 $\mathbb{Z}/m\mathbb{Z}$ is a field iff m is a prime

Proof: Suppose that m is **not** a prime. Then $\exists \ 0 < r, s < m$, such that $m = r \cdot s$. Assume for contradiction that there $\exists \ t, u$ s.t. $r \cdot t = 1, s \cdot u = 1$ which are the existence of multiplicative inverses. Then in $\mathbb{Z}/m\mathbb{Z}$. $1 = 1 \cdot 1 = s \cdot u \cdot r \cdot t = u \cdot t \cdot r \cdot s = u \cdot t \cdot 0 = 0$. Since $1 \neq 0$, this is a contradiction. So m is not prime $\Rightarrow \mathbb{Z}/m\mathbb{Z}$ is not a field.

Assuming that m is **prime**.

Lemma 2.1.2 if p is prime and $p \nmid x, p \nmid y, then p \nmid xy$

Claim 2.1.1 Let $x \in \mathbb{Z}/m\mathbb{Z}$ and m is prime then if $x \neq 0$

Proof: Let $a,b \in \mathbb{Z}$, suppose $a \neq b(m)$, then $m \nmid a - b$. Fix a representative of $x \in \mathbb{Z}$ call it \tilde{x} . Since $x \neq 0, m \nmid \tilde{x}$. Since m is prime, $m \nmid \tilde{x}(a - b)$, so $\tilde{x}a \not\equiv \tilde{x}b \mod m$. I.e $xa \neq xb \in \mathbb{Z}/m\mathbb{Z}$. This proves the claim.

We know multiplication by x is **injective**. By HW1, Q1(b) is also **surjective**. In other words, $\forall s \in \mathbb{Z}/m\mathbb{Z}$, $\exists y \text{ s.t. } xy = s$. In particular, $\exists y \text{ s.t. } xy = 1$. It follows that any element $x \neq 0$ has a multiplicative inverse, so if m is prime, $\mathbb{Z}/m\mathbb{Z}$ is a field. Upshot: $\mathbb{Z}/p\mathbb{Z}$ is a field for all prime. We will denote it \mathbb{F}_p

Once proved that multiplicative and additive inverses of a are unique in a field, we'll denote them respectively by a^{-1} and -a.

Chapter 3

Week 3

3.1 Vector Space

Definition 3.1.1: Vector Space

Let \mathbb{F} be a field. A vector space over \mathbb{F} is a set V equipped with two operations:

- 1. $+: V \times V \rightarrow V, (v, w) \mapsto v + w$
- 2. $\mathbb{F} \times V \to V$, $(a, v) \mapsto av$, where a is a scalar product of v.

Elements of \mathbb{F} will be called scalars. Satisfying that for all $x,y,z\in V,\,a,b\in\mathbb{F}$:

- 1. Commutativity of addition x + y = y + x
- 2. Associativity (x + y) + z = x + (y + z)
- 3. Additive identity $\exists \ 0 \in V \text{ s.t. } 0 + x = x \ \forall x \in V$
- 4. Inverses $\forall x \in V, \exists y \text{ s.t } x + y = 0$
- 5. Multiplicative identity 1x = x
- 6. Associativity of multiplication a(bx) = (ab)x
- 7. Distributivity of scalar multiplication over vector addition a(x + y) = ax + ay
- 8. Distributivity of scalar addition over scalar multiplication(a + b)x = ax + bx

Example 3.1.1

$$\mathbb{F}^n = \{(a_1, a_2, ..., a_n) : a_i \in \mathbb{F} \ 1 \le i \le n\}$$

 a_i is the ith coordinate of $(a_1, ..., a_n)$

$$(a_1, ..., a_n) + (b_1, ..., b_n) = (a_1 + b_1, ..., a_n + b_n)$$

$$c \in \mathbb{F}, \ c(a_1, ..., a_n) = (ca_1, ..., ca_n)$$

Example 3.1.2

Define: An $m \times n$ matrix with entries in \mathbb{F} is an array of elements of \mathbb{F} with m rows and n columns.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Example 3.1.3

Let S be a non empty set. Let $\mathcal{F}(S,F)$ be the set of all functions $f:S\to F$.

$$\mathcal{F}(S,F) = \{f: S \to F\}$$

Definition 3.1.2: Properties of vector space

Let V be a vector space over \mathbb{F} . Then

- If $x, y, z \in V$ and x + z = y + z then x = y
- The vector $0 \in V$ is unique
- Let $x \in V$. The vector y s.t. x + y = 0 is unique, call it -x.

These properties could be derived from the axioms.

Theorem 3.1.1

Let V be a vector space over \mathbb{F} . Then

- 1. $0v = 0 \ \forall v \in V$
- 2. $(-a)v = -(av) = a(-v) \ \forall a \in \mathbb{F}, v \in V$
- 3. 0a = 0

Note:-

Note that the proofs are in notes for baby Rudin

Proof: 1.

$$0v = (0+0)v = 0v + 0v$$

By the cancellation property, 0v on both sides can be canceled, so 0 = 0v 2.

$$(-a)v + av = v(-a + a) = 0v = 0$$

$$\Rightarrow (-a)v = av$$

By doing it the other way round, we get av = a(-v) 3.

$$0a + 0a = (0 + 0)a = 0a$$

Since given $x + y = x \Rightarrow y = 0$, 0a = 0

☺

Definition 3.1.3: x-y

Now we can define x - y by x + (-y)

Definition 3.1.4: Subspaces

Let V be a vector space over \mathbb{F} . We say that $W \subset V$ is a **subspace** of V if it is a vector space over \mathbb{F} under the restriction of the operations of V.

Since the operations on V satisfy the properties above, it is only needed to check a few things.

Theorem 3.1.2

Let V be a vector space. Then $W \subset V$ is a subspace **iff** the following hold.

- 1. $W \neq \emptyset$
- 2. $\forall x, y \in W, x + y \in W$ (closed under addition)
- 3. $c \in \mathbb{F}$, $x \in W$, $\Rightarrow cx \in W$ (closed under scalar multiplication)

Proof: (Direction \Leftarrow) Assume that W satisfies (2) and (3). Then the operations + and \cdot on W are well-defined.

Axioms 1,2,5,6,7,8 all automatically hold since the operation on W are defined from those on V (inherited from). In other words, additive identity and inverses are the axioms to be checked.

Additive identity By (1) $\exists w \in W$. Then 0w = 0 so W has a 0.

Inverses Let $w \in W$. Then $(-1)w \in W$ by (3).

$$(-1)w + w = (-1+1)w = 0w = 0$$

So (-1)w is the additive inverse of w and is contained in W.

(Direction \Rightarrow) Suppose W is a subspace. Then $0 \in W$ and by definition $\forall x, y \in W, x + y \in W$ and $\forall c \in \mathbb{F}$ and $x \in W$, $cx \in W$.

Corollary 3.1.1

If $W \subset V$ is a subspace, the 0w = 0v and in particular $0v \in W$.

Example 3.1.4

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$$

$$W = (x, x) : x \in \mathbb{R}$$

Theorem 3.1.3

The intersection of two subspaces is a subspace.

Proof: Let W_1, W_2 be subspace of V

- $0 \in W_1 \cap W_2$
- If $x, y \in W_1 \cap W_2$ then

 $x + y \in W_1$ since W_1 is a subspace

 $x + y \in W_2$ since W_2 is a subspace

$$\Rightarrow x + y \in W_1 \cap W_2$$
.

• if $x \in W1_{\cap}W_2$, $c \in \mathbb{F}$

 $cx \in W1$ since W_1 is a subspace

$$cx \in W_2$$
 since W_2 is a subspace $\Rightarrow cx \in W_1 \cap W_2 \Rightarrow W_1 \cap W_2$ is a field.

3.2 Linear combination

Definition 3.2.1

Let V be a vector space and $S \subseteq V$, $S \neq \emptyset$. A vector $v \in V$ is a linear combination of elements of S is there exists $u_1, ..., u_n \in S$, $d_1, ...d_n \in F$ such that $v = a_1u_1 + ... + a_nu_n$. We say that v is a linear combination of $u_1, ...u_n$. The a are called the coefficients.

Example 3.2.1

Let $V = P(Q) = \{a_1x, ..., a_nx^n : a_x \in \mathbb{Q}\}$ be a vector space. Then $3x^2 + 1$ is a linear combination of x and 1. The coefficients are 3, 1.

3.3 Span

Definition 3.3.1

Let S be a non empty set be a subset of V. The span of S, denoted span(S) is the set of all linear combinations of elements of S. If span(S) = V, we say that S spans V.

Example 3.3.1

Let $V = \mathbb{R}^3$ what's the span for (1, 0, 1), (0, 0, 3)

$$a, 0, c, a, c \in \mathbb{R}$$

Theorem 3.3.1

The span of any $S \subset V$ is a subspace W such that $S \subset W$. Moreover, any subspace containing S will also contain W.

Proof: We will check the three properties of subspace:

- span(S) is not empty by definition.
- If $V = \sum_{i=1}^n a_i u_i$, $w = \sum_{j=1}^m c_j u_j$ for $u_i, u_j \in S$, then $u + w = \sum_{i=1}^n a_i u_i + \sum_{j=1}^m c_j u_j$ which is a linear combination of elements of S.
- If $c \in F$ and $v = \sum_{i=1}^{n} a_i u_i$ with $u_i \in S$, then $cv = \sum_{i=1}^{n} c a_i u_i$ which is a linear combination of elements of S so $cv \in span(s)$). $S \subset S$

3.4 Linear Independence/Dependence

Definition 3.4.1: Linear relation

Let V be a vector space over \mathbb{F} . A subset $S \subset V$ is linearly dependent if there exists $s_1, ..., s_n \in S$ and $c_1, ..., c_n \in \mathbb{F}$, **not all zero** such that

$$c_1s_1 + \dots + c_ns_n = 0$$

We call such an expression a linear relation. We can always do this with $c_1 = c_2 = ... = c_n = 0$. This is called the **trivial linear relation**.

Definition 3.4.2: Linear Independence

A list $v_1, ..., v_m$ of vectors in V is **linearly independent** if the only choice of $a_1, ..., a_m \in \mathbb{F}$ that makes $a_1v_1 + ... + a_mv_m = 0$ is $a_1 = ... = a_m = 0$. In other words, it's linearly independent if there is no nontrivial linear relation among two vectors.

Theorem 3.4.1

Let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Proof: This is in exercise

☺

Corollary 3.4.1

Let $S_1 \subset S_2 \subset V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem 3.4.2

Let $S \subset V$ be linearly independent, and let $v \in V \setminus S$. Then $S \cup \{v\}$ is linearly independent $\iff v \notin span(S)$.

Proof: (\Rightarrow) Suppose $S \cup \{v\}$ is linearly independent. Assume for contradiction that $v \in span(S)$. Then there exist scalars $c_1, \ldots, c_n \in \mathbb{F}$ and $s_1, \ldots, s_n \in S$ such that

$$v = \sum_{i=1}^{n} c_i s_i.$$

Rearranging gives

$$1 \cdot v + \sum_{i=1}^{n} (-c_i) s_i = 0.$$

This is a nontrivial linear relation among elements of $S \cup \{v\}$, contradicting linear independence. Hence $v \notin span(S)$.

 (\Leftarrow) Suppose $v \notin span(S)$. We show $S \cup \{v\}$ is linearly independent. Consider a linear relation

$$av + \sum_{i=1}^{n} c_i s_i = 0$$

with $s_i \in S$, $a, c_i \in \mathbb{F}$. If a = 0, then we have $\sum_{i=1}^n c_i s_i = 0$. Since S is linearly independent, this implies all $c_i = 0$, so the relation is trivial.

If $a \neq 0$, then we can solve for v:

$$v = \sum_{i=1}^{n} \left(-\frac{c_i}{a} \right) s_i,$$

which shows $v \in span(S)$, a contradiction. Hence the case $a \neq 0$ cannot occur, so the only possible relation is trivial.

Therefore $S \cup \{v\}$ is linearly independent.

(

3.5 Bases

Definition 3.5.1

A basis b for a vector space V is a subset $b \subset V$ such that:

- 1. B is linearly independent
- 2. B spans V

If b is a basis for V, we say that the vectors in b form a basis of V.

Theorem 3.5.1

Let V be a vector space, and u_1, \ldots, u_n be distinct vectors in V. Then $b = \{u_1, \ldots, u_n\}$ is a basis of V if and only if each $v \in V$ can be written uniquely as a linear combination of the vectors in b, i.e.

$$v = c_1 u_1 + \dots + c_n u_n$$

for unique scalars c_1, \ldots, c_n .

Proof: (\Rightarrow) Suppose b is a basis of V.

Since b spans V, every $v \in V$ can be written as

$$v = c_1 u_1 + \cdots + c_n u_n$$

for some scalars c_1, \ldots, c_n . This proves *existence*.

For uniqueness, suppose

$$v = c_1 u_1 + \cdots + c_n u_n = d_1 u_1 + \cdots + d_n u_n$$
.

Subtracting, we obtain

$$0 = (c_1 - d_1)u_1 + \dots + (c_n - d_n)u_n.$$

Since b is linearly independent, each coefficient must vanish, so $c_i = d_i$ for all i. Thus the representation is unique.

(⇐) Conversely, assume that every $v \in V$ can be written uniquely as a linear combination of the vectors in b.

Since every vector has such a representation, b spans V.

To prove linear independence, suppose

$$0 = c_1 u_1 + \dots + c_n u_n.$$

But also

$$0 = 0 \cdot u_1 + \dots + 0 \cdot u_n.$$

By uniqueness of representation, we must have $c_i = 0$ for all i. If there are some other nontrivial linear relation such that $0 = c_1u_1 + ... + c_nu_n$, where not all $c_i = 0$, then it contradicts with the uniqueness assumption. Thus b is linearly independent.

Therefore b is a basis of V.

Theorem 3.5.2

If V is a vector space with a finite spanning set, then V has a finite basis.

Proof: Let S be a finite spanning set of V. Our goal is to reduce S step by step until we obtain a basis.

Step 1: Check if S is linearly independent.

If S is already linearly independent, then S itself is a finite basis of V, and we are done.

Step 2: Remove one redundant vector if S is dependent.

Otherwise, S is linearly dependent. Thus there exist distinct vectors $v_1, \ldots, v_n \in S$ and scalars $a_1, \ldots, a_n \in \mathbb{F}$, not all zero, such that

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0.$$

Choose an index i with $a_i \neq 0$. Then we can solve for v_i :

$$v_i = (-a_i)^{-1} \sum_{k \neq i} a_k v_k.$$

This shows that v_i is a linear combination of the other vectors in S.

Step 3: Show that the span does not change.

Let $S' = S \setminus \{v_i\}$. We claim that

$$span(S) = span(S').$$

Indeed, since $S' \subseteq S$, it follows immediately that $span(S') \subseteq span(S)$. Conversely, take any $u \in span(S)$. Then

$$u=cv_i+\sum_{j=1}^r c_ju_j,\quad \text{for some }u_j\in S.$$

Substituting the expression for v_i in terms of the other vectors, we obtain

$$u = c(-a_i)^{-1} \sum_{k \neq i} a_k v_k + \sum_{j=1}^r c_j u_j,$$

which is a linear combination of elements of S'. Thus $u \in span(S')$. Since $u \in span(S)$ was arbitrary, we conclude $span(S) \subseteq span(S')$. Therefore span(S) = span(S').

Step 4: Repeat the process.

We have shown how to remove one redundant vector while preserving the span. If S' is linearly independent, then S' is a basis and we are finished. If S' is still dependent, we can repeat the process, removing one vector at a time while keeping the same span.

Step 5: Termination.

Since S is finite, this process must terminate after finitely many steps. The result is a subset $B \subseteq S$ which is finite, linearly independent, and still spans V. Thus B is a finite basis of V.

(2)

Special case. If $V = \{0\}$, then the empty set \emptyset is by convention a basis, and it is finite.

Theorem 3.5.3

Suppose V has a spanning set G consisting of n elements. Let $L \subset V$ be finite, linearly independent, with m elements. Then:

- 1. $m \leq n$.
- 2. There exists a subset $H \subset G$ of size n-m such that $L \cup H$ spans V.

Proof: We argue by induction on m = |L|.

Base case: If m=0, then $L=\emptyset$. Clearly $0 \le n$, and choosing H=G (of size n) gives $L \cup H=G$, which spans V.

Inductive step: Assume the result holds for all linearly independent sets of size m. Now let $L = \{v_1, \ldots, v_{m+1}\}$ be linearly independent. Then $\{v_1, \ldots, v_m\}$ is linearly independent, so by the inductive hypothesis, there exist $u_1, \ldots, u_{n-m} \in G$ such that

$$\{v_1,\ldots,v_m\}\cup\{u_1,\ldots,u_{n-m}\}$$

spans V.

In particular, v_{m+1} can be expressed as

$$v_{m+1} = a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_{n-m}u_{n-m}.$$

Since L is linearly independent, not all b_j can vanish. Without loss of generality, suppose $b_1 \neq 0$. Then we may solve for u_1 :

$$u_1 = b_1^{-1} \Big(v_{m+1} - (a_1 v_1 + \dots + a_m v_m + b_2 u_2 + \dots + b_{n-m} u_{n-m}) \Big).$$

Hence $u_1 \in span(\{v_1, \ldots, v_{m+1}, u_2, \ldots, u_{n-m}\}).$

It follows that

$$V = span(\{v_1, \dots, v_m, u_1, \dots, u_{n-m}\}) = span(\{v_1, \dots, v_{m+1}, u_2, \dots, u_{n-m}\}).$$

☺

Therefore, if we let $H = \{u_2, \ldots, u_{n-m}\}$, which has size n - (m+1), we obtain $L \cup H$ as a spanning set.

Thus the theorem holds for m + 1. By induction, it holds for all m.

Corollary 3.5.1

If V has a finite basis, then all bases of V are finite and have the same cardinality.

Proof: Let B, B' be two bases of V. Since B' spans V and B is linearly independent, the theorem gives $|B| \leq |B'|$. Reversing the roles gives $|B'| \leq |B|$. Hence |B| = |B'|.

Finally, if V had one finite basis B and one infinite basis A, then picking |B| + 1 elements of A would give a linearly independent set larger than B, contradicting the theorem. Thus all bases have the same finite cardinality, called the dimension of V.

Chapter 4

Tutorial

4.1 Week 2 tutorial

Question 1: Problem 1. \mathbb{Q} adjoin $\sqrt{3}$

1. Prove that the following set, endowed with the usual operations is a field:

$$\mathbb{Q}[3] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}\$$

- 2. Consider the map $\varphi(a+b\sqrt{3})=a-b\sqrt{3}$. Prove that it is a field isomorphism (i.e. $\varphi(z\cdot z')=\varphi(z)\cdot \varphi(z')$ $\varphi(z+z')=\varphi(z)+\varphi(z')$)
- 3. Prove that $\mathbb{Q}[3]$ is the smallest number field to contain both \mathbb{Q} and $\sqrt{3}$.
- 4. The above means, that $\mathbb{Q}[3]$ is the "smallest" field to extend the rational numbers to contain the roots of the equation $x^2 3 = 0$. What does this make the complex numbers?

4.1.1 (i) $\mathbb{Q}^{\sqrt{3}}$ is a field

Definition 4.1.1: Definition of $\mathbb{Q}^{\sqrt{3}}$

$$\mathbb{Q}^{\sqrt{3}} := \{ a + b\sqrt{3} \mid a, b \in \mathbb{Q} \}$$

with the "usual" operations

$$(a+b\sqrt{3})+(c+d\sqrt{3})=(a+c)+(b+d)\sqrt{3}, \qquad (a+b\sqrt{3})(c+d\sqrt{3})=(ac+3bd)+(ad+bc)\sqrt{3}.$$

Example 4.1.1 (Proof that $\mathbb{Q}^{\sqrt{3}}$ is a field)

Proof: • Closure. The formulas above show that a sum or a product of two elements again has rational coefficients, hence lies in $\mathbb{Q}^{\sqrt{3}}$.

• Additive identity and inverses.

$$0 = 0 + 0\sqrt{3} \in \mathbb{Q}^{\sqrt{3}}, \qquad -(a + b\sqrt{3}) = (-a) + (-b)\sqrt{3} \in \mathbb{Q}^{\sqrt{3}}.$$

• Multiplicative identity.

$$1 = 1 + 0\sqrt{3} \in \mathbb{Q}^{\sqrt{3}}.$$

• Non-zero multiplicative inverses. Let $a + b\sqrt{3} \neq 0$. Then $a^2 - 3b^2 \neq 0$ (otherwise $(a/b)^2 = 3$ would give a rational root of $x^2 - 3$). Hence

$$(a+b\sqrt{3})^{-1} = \frac{a-b\sqrt{3}}{a^2-3b^2} \in \mathbb{Q}^{\sqrt{3}},$$

because $(a + b\sqrt{3})(a - b\sqrt{3}) = a^2 - 3b^2$.

• Associativity, commutativity, distributivity. All follow from the corresponding properties of \mathbb{R} .

☺

4.1.2 (ii) $\varphi(a + b\sqrt{3}) = a - b\sqrt{3}$ is a field isomorphism

Example 4.1.2 (Field automorphism φ)

Proof: Let $\varphi: \mathbb{Q}^{\sqrt{3}} \to \mathbb{Q}^{\sqrt{3}}$ be $\varphi(a+b\sqrt{3}) = a-b\sqrt{3}$. Additive homomorphism.

additive nomomorphism.

$$\varphi\big((a+b\sqrt{3})+(c+d\sqrt{3})\big)=\varphi\big((a+c)+(b+d)\sqrt{3}\big)=(a+c)-(b+d)\sqrt{3}=\varphi(a+b\sqrt{3})+\varphi(c+d\sqrt{3}).$$

Multiplicative homomorphism.

$$\varphi((a+b\sqrt{3})(c+d\sqrt{3})) = \varphi((ac+3bd) + (ad+bc)\sqrt{3})$$

$$= (ac+3bd) - (ad+bc)\sqrt{3}$$

$$= (a-b\sqrt{3})(c-d\sqrt{3})$$

$$= \varphi(a+b\sqrt{3}) \varphi(c+d\sqrt{3}).$$

Bijective. φ is its own inverse: $\varphi(\varphi(z)) = z$ for all z. Hence φ is bijective.

⊜

4.1.3 (iii) Minimality of $\mathbb{Q}^{\sqrt{3}}$

Example 4.1.3 (The field $\mathbb{Q}^{\sqrt{3}}$ is the smallest field containing \mathbb{Q} and $\sqrt{3}$)

Proof: Let K be any field with $\mathbb{Q} \subseteq K$ and $\sqrt{3} \in K$. For $a, b \in \mathbb{Q} \subseteq K$ we have

$$a+b\sqrt{3}\in K$$

because K is closed under the field operations. Thus $\mathbb{Q}^{\sqrt{3}} \subseteq K$. Since K was arbitrary, $\mathbb{Q}^{\sqrt{3}}$ is contained in every such field, i.e. it is the smallest field containing \mathbb{Q} and $\sqrt{3}$.

4.1.4 (iv) Interpretation in terms of splitting fields

Example 4.1.4 (The role of $\mathbb{Q}^{\sqrt{3}}$ in the theory of splitting fields)

Proof: The polynomial $x^2 - 3$ has roots $\pm \sqrt{3}$. The field $\mathbb{Q}^{\sqrt{3}}$ contains both of them, hence it is a *splitting field* of $x^2 - 3$ over \mathbb{Q} . In general, for a polynomial $f \in \mathbb{Q}^x$ the smallest field containing all of its roots is called the splitting field of f. By analogy, the complex numbers \mathbb{C} are the smallest field extension of \mathbb{R} that contains the roots of *every* real polynomial; equivalently, \mathbb{C} is an algebraic closure of \mathbb{R} . (Over \mathbb{Q}

the analogous minimal algebraically closed field is the field of algebraic numbers, a subfield of \mathbb{C} .)

☺

Question 2: Problem 2. Characteristic p

Let \mathbb{F} be a field of characteristic p, meaning:

$$\underbrace{1+\cdots+1}_{v}$$

Prove that $(a+b)^p=a^p+b^p$ for all $a,b\in\mathbb{F}$