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0.1 Introduction

The course is mainly based on the book Linear Algebra 4th edition by S.H.Friedberg, coupled with A Readable
Introduction to Real Mathematics by F. Su



Chapter 1

Week 1

1.1 Sets, Functions, Fields

Definition 1.1.1: Sets

A set is a collection of elements. If x is in the set S, we write x € S. If not, we write x ¢ S. Two ways of
defining a set:

1. Listing the objects in that set

Note that the order of elements does not matter, and repeated elements are only listed once.

S={1,2,3,6} ={2,1,3,6}

2. Describing or characterizing the elements of S

A ={x : x is a positive integer dividing 6}

Example 1.1.1

P ={x:xis a prime nuber}
e Z integers
e (Q the rational numbers
e R the real numbers

Two sets are equal if they contain the same elements if S and T and equal, we write S =T

Example 1.1.2

B={-1,0,1,2,3,4,5,6,7}
C ={2,3} = {x : x is an integer between 2&3}



Definition 1.1.2: Subset

If S and T are set such that all elements of s are contained in T, we say that S is a subset of T and we
write SC T
If S is a subset of T and S # T, we write S € T and say that S is a proper subset of T

Definition 1.1.3: Empty Set

The empty set is the set containing no elements, denoted by @ or {}. If S and T are sets. SUT ={x : x €
S or x € T} is called the union of S and T. SNT ={x:x € S and x € T} is called the intersection of S
and T.

Example 1.1.3

N={xeZ:x>0}={1,2,3,4...}
Let -N={x€e€Z:x<0}={-1,-2,-3,-4..} then NN—-N =0 and NU-N ={x € Z: x # 0}. If we

have a list Sy, ..., Sk of sets, we can write

k
USi ={x:x € S; for at least one of the S;,i =1, .., k}
i=1

k
ﬂsi ={x:x€S;for all of the S;,i = 1,..,k}.

i=1



Definition 1.1.4: Function

Consider two sets A and B, and suppose that with each element x of A there is associated, in some
manner, an element of B, which denoted by f(x). Then f is said to be a function from A to B, denoted
by f:A— B.

o The set A is called the domain of f
o The set B is called the codomain of f
o The elements f(x) are called the values of f

o The set of all values of f is called the range of f

Domain Range

UuTBWOpo,)
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If Ec A, f(E) is defined to be the set of all elements f(x), for x € E. We call f(E) the image of E under

f.
If E C B, f~'(E) denotes the set of all x € A such that f(x) € E. We call f~!(E) the preimage of E under
f.

Definition 1.1.5: Equality of functions

Two functions f,g:S — T are equal if f(x) = g(x) for allx € S

Example 1.1.4
For example, let S = {x € R: |x| > 1} f : S — R is the function s.t. f(x)= 7. Then

e domain is S
e codomain is R

e rangeis{xeR:0<x<1}cR



Definition 1.1.6: Injective, surjective, and bijective

If every element is the range of f has a unique preimage, we say that f is injective or one-to-one. In
notation:

flx1) = f(x2) = x1 = x2

A counter example would be f(x) = x2. If every element in the codomain is in the image, we say that f
is surjective (onto). In other words, the range equals the codomain. In notation:

Vy € B,3 x € A such that f(x) =y

If f is surjective and injective, we say that F is bijective or a bijection. It’s perfect pairing — each input
gives a unique output, and every element of the codomain is used.

O
O——
(O—© O (O—©
@

If f:S— T and U C S the restriction of f to U is denoted f |y: U = T. f |y (u) = f(u) for all u e U

Example 1.1.5

Let f : Z — N be defined by f(x) = |x| + 1. Then f is surjective but not injective. The function f |N
is injective but not surjective because 1 is in it’s range but doesn’t have a preimage. Let Z>o = {x € Z :
x = 0}. Then f |,0 is both injective and surjective, hence a bijection.

Example 1.1.6 (Composite functions)
let S, T,U as sets,
f:5—>T,9g:T->U

The composite go f : S — U.

Note that given S,T and f, g : S — S. fog doesn’t necessarily equal to go f. For example f(x) = x+1
and g(x) = 2x.

Example 1.1.7

Exercise: check that f, g is invertible and s € S, f~1(s) .

Is f : R — R invertible?

f(x) =3x +1 has inverse g(x) = (x —=1)/3 Is f : Z — Z invertible?

For f(z) = 3z + 1, the inverse g(x) = (x — 1)/3 will make some of the output not integers. For example

f(g(2)).

Question 1

Exercise: how to prove a function is invertible if it’s bijective?




The definition of field and properties are noted down in note for baby Rudin, thus disregard.

Definition 1.1.7: Equivalence relations

e F(1) Commutativity -a+b=b+aanda-b=b-a
e F(2) Associativity - (a+b)+c=a+(b+c)and (a-b)-c=a-(b-c)

o F(3) Existence of Identity Elements - There exists elements 0 € F and 1 € F such that 0+a =4
and 1-a = a. 0 is called the additive identity and 1 is the multiplicative identity. Note that
0+#1

F(4) Existence of Inverses - For cach a € F there exists b € F and nonzero ¢ € F such that
a+b=0anda-c=1

e F(5) Distributivity - a- (b +c¢) =ab +ac

Definition 1.1.8: Equivalence relations

Let S be a set. A relation on S is a subset R € S X S. We say a pair (x,y) € S X S satisfies the notation if
(x,y) € R. We typically denote the relation ~ and while x ~ y if (x, y) € R. For example ~ could be =

Definition 1.1.9
A relation on S is an equivalence relation if it satisfies the following 3 properties Vx,t € S
e s~s
e s~t=t~s

es~tandt~u=s~u

Definition 1.1.10

If (s, ~) is a set equipped with a equivalence relation and t € S, let C; = {s € S : s ~ t}

Theorem 1.1.1
Let (s, ~) is a set equipped with an equivalence relation, then 3 T C S such that

® S =User Gt
[ ) CtﬂCt/:Q)ift;tt'

We call T a set of representation for ~

EN|



Chapter 2

Week 2

2.1 Modular Arithmetic

Definition 2.1.1

Let m € N. Let a,b € Z. We say that a is congruent to b (mod m), denoted a = b (mod m). If m|(b — a).

Example 2.1.1
Let a =3,b=45. Thena=b mod 2 and mod 3

Lemma 2.1.1 a = b(m) if and only if (iff) there exists k € Z such that a = b + km.

Proof: Suppose a = b(m) then by definition m|b — a. This means that b — a is a multiple of m, so it can
be written as b —a = mk for some k € Z. Rearranging, we have b = a + mk or a = b + (—k)m. —k is our
desired multiple.

From another direction, suppose that a = b + mk then b —a = —mk which is divisible by m. By definition,
a =b(m).

Theorem 2.1.1 Let m € IN. For each a € Z, there exists a unique r € {0, ..., m—1} such that a = r (mod m).

Proof: We will prove that there exist unique integers k,r such that a = km + r with 0 < » < m. By a
previous lemma, this implies a = r (mod m).

Existence. Consider all multiples of m, {0, +m, +2m, ...}, which cover the real line by the Archimedean
property. Since a is an integer, there exists k such that

km<a< (k+1)m.
Subtracting km gives 0 < a — km < m. Define r = a — km, then a = km +r with 0 < r < m.
Uniqueness. Suppose a = km+r =k'm+ 7" with 0 < 7,7’ <m. Thenr—r' = (k' —k)m,sor—r"is a
multiple of m. On the other hand, since both r and 7’ lie in [0, m), their difference satisfies

-m<r—-r <m.

The only multiple of m in this range is 0, hence r — ' =0 = r =’ and then k = k’.

For the equivalence relation of congruence modulo m, we have
ZZCOUC1U"'UCm_1,

where C, ={a € Z :a =r (mod m)}. We call {0, ..., m — 1} the standard representatives.

8



Theorem 2.1.2 If a = b(m) and c =d(m), thena+c=b+d(m), a-c=b-d(m)
Proof: By lemma,a=b+km,c=d+k'm.
a+c=b+km+d+km=b+d+(k+k'ym=>b+d(m)

a-c=(b+km)d+k'm)=bd+kmd+k'mb +kk'm? = bd + m(kd + K'b + kk'm) = bd(m)

Definition 2.1.2

The integers modulo m, denoted Z/mZ. is the set of equivalence classes mod m. We will denote it
Z/mZ ={0,1,...,m — 1}. Thanks to the last theorem, Z/mZ. is equipped with addition and multiplication.
Regular reputation in Z+ remainder after division by m.

Definition 2.1.3

A prime number is p € N,p > 1, and s.t. Forallx,y e Z,if pfx,pty=p 1 xy

Theorem 2.1.3 Z,/mZ. is a field iff m is a prime

Proof: Suppose that m is not a prime. Then 30 < r,s < m, such that m = r-s. Assume for contradiction
that there 3 ¢,u s.t. -t =1,s-u = 1 which are the existence of multiplicative inverses. Then in Z/mZ.
l=1-1=s-u-r-t=u-t-r-s=u-t-0=0. Since 1 # 0, this is a contradiction. So m is not prime
= Z./mZ. is not a field.

Assuming that m is prime.

Lemma 2.1.2 if p is prime and p { x,p ¥ y,thenp t xy

Claim 2.1.1 Let x € Z/mZ and m is prime then if x # 0

Proof: Let a,b € Z, suppose a # b(m), then m ¥ a — b. Fix a representative of x € Z call it .
Since x # 0, m { X. Since m is prime, m {1 X(a — b), so Xa # ¥b mod m. L.e xa # xb € Z/mZ. This
proves the claim.

We know multiplication by x is injective. By HW1, Q1(b) is also surjective. In other words, Vs €
Z/mZ,3 y st. xy = s. In particular, 3 y s.t. xy = 1. It follows that any element x # 0 has a
multiplicative inverse, so if m is prime, Z/mZ is a field. Upshot: Z/pZ is a field for all prime. We will
denote it ),

Once proved that multiplicative and additive inverses of a are unique in a field, we’ll denote them respec-
tively by a~! and —a.




Chapter 3

Week 3

3.1 Vector Space

Definition 3.1.1: Vector Space

Let [F be a field. A vector space over FF is a set V equipped with two operations:
1. +: VXV >V, (v,w)—v+w
2. FxXV — V, (a,v) — av, where a is a scalar product of v.

Elements of IF will be called scalars. Satisfying that for all x,y,z € V, a,b € F:
1. Commutativity of addition x + y =y + x
2. Associativity (x +y)+z=x+(y +2)

Additive identity 30e€ V st. 0+x=xVxeV

= ®

Inverses Vx e V,Jystx+y=0

2

Multiplicative identity 1x = x
Associativity of multiplication a(bx) = (ab)x

Distributivity of scalar multiplication over vector addition a(x +y) = ax +ay

® N >

Distributivity of scalar addition over scalar multiplication(a + b)x = ax + bx

Example 3.1.1

F' ={(ay,as,...,a,):a; e F1< i< n}
a; is the ith coordinate of (ay, ..., a;)
(611, ...,Eln) + (blr-~-/ bn) = (611 + blr e,y + bn)

ceF, clay,...,a,) = (cay, ..., cay,)

Example 3.1.2

Define: An m X n matrix with entries in IF is an array of elements of IF with m rows and n columns.

10



aiy a2 - dip
g1 dg2 -+ dap

Am1  Am2 - OGmn

Example 3.1.3
Let S be a non empty set. Let F (S, F) be the set of all functions f : S — F.

F(S,F)={f:S—F}

Definition 3.1.2: Properties of vector space

Let V be a vector space over IF. Then
e lfx,y,zeVandx+z=y+zthenx=y
e The vector 0 € V is unique
e Let x € V. The vector y s.t. x +y = 0 is unique, call it —x.

These properties could be derived from the axioms.

Theorem 3.1.1
Let V be a vector space over IF. Then

1. v=0VoeV
2. (-a)o=—(av)=a(-v)VaecF,oeV
3. 0a=0

Note that the proofs are in notes for baby Rudin

Proof: 1.
0v =(0+0)v =0v+0v

By the cancellation property, 0v on both sides can be canceled, so 0 = Qv

2.
(—a)v+av=v(-a+a)=00=0

= (—a)v = av

By doing it the other way round, we get av = a(—v)
3.
0a + 0a = (0 + 0)a = Oa

Since given x +y =x =y =0, 0a =0

Definition 3.1.3: x-y

Now we can define x —y by x + (-y)

11



Definition 3.1.4: Subspaces

Let V be a vector space over IF. We say that W C V is a subspace of V if it is a vector space over F
under the restriction of the operations of V.
Since the operations on V satisfy the properties above, it is only needed to check a few things.

Theorem 3.1.2
Let V be a vector space. Then W C V is a subspace iff the following hold.

1. W0
2. Vx,ye W, x +y € W (closed under addition)
3. ceF, xeW, = cx € W (closed under scalar multiplication)

Proof: (Direction <) Assume that W satisfies (2) and (3). Then the operations + and - on W are
well-defined.

Axioms 1,2,5,6,7,8 all automatically hold since the operation on W are defined from those on V' (inherited
from). In other words, additive identity and inverses are the axioms to be checked.

Additive identity By (1) 3w € W. Then 0w = 0 so W has a 0.

Inverses Let w € W. Then (—1)w € W by (3).

Fw+w=(-1+Dw=0w=0
So (=1)w is the additive inverse of w and is contained in W.

(Direction =) Suppose W is a subspace. Then 0 € W and by definition Vx,y € W, x+y € W and Vc € F
and x e W, cx e W.

Corollary 3.1.1
If W C V is a subspace, the 0w = 0v and in particular Ov € W.

Example 3.1.4

R? = {(x,y): x,y € R}
W=(xx):xeR

Theorem 3.1.3

The intersection of two subspaces is a subspace.
Proof: Let Wy, Wy be subspace of V
e 0 e Wy NW,y

° Ifx,y € Wi N W5 then
x+y €W; since W is a subspace

x+y € Wy since W is a subspace

:x+y€W10W2.
o ifxe WI,W,, c € F

cx € W1 since W; is a subspace

12



cx € Wy since W is a subspace

= cx € Wi NWy, = Wi NWs is a field.

3.2 Linear combination

Definition 3.2.1

Let V be a vector space and S C V,S # 0. A vector v € V is a linear combination of elements of S is there
exists uy,...,uy € S,dy,...d, € F such that v = ayuy + ... + a,u,. We say that v is a linear combination of
ui,...uy. The a are called the coefficients.

Example 3.2.1

Let V = P(Q) = {a1x, ...,a,x" : ay € Q} be a vector space. Then 3x2 + 1 is a linear combination of x and
1. The coefficients are 3, 1.

3.3 Span

Definition 3.3.1

Let S be a non empty set be a subset of V. The span of S, denoted span(S) is the set of all linear
combinations of elements of S. If span(S) = V, we say that S spans V.

Example 3.3.1
Let V = R3 what’s the span for (1,0,1),(0,0,3)

a,0,c,a,c € R

Theorem 3.3.1

The span of any S C V is a subspace W such that S € W. Moreover, any subspace containing S will also
contain W.

Proof: We will check the three properties of subspace:
e span(S) is not empty by definition.

o ItV =3 ajuj, w= XL, cjuj for uj,uj € S, then u +w = Xi_, aju; + XL, cjuj which is a linear
combination of elements of S.

e Ifce Fandv = )", a;ju; with u; € S, then cv = )| caju; which is a linear combination of elements
of S so cv € span(s)). SC S

13



3.4 Linear Independence/Dependence

Definition 3.4.1: Linear relation

Let V be a vector space over IF. A subset S C V is linearly dependent if there exists si,...,5, € S and
c1,...,¢y € IF, not all zero such that
c1S1+ ...+ ¢cySy; =0

We call such an expression a linear relation. We can always do this with ¢; = ¢co = ... = ¢, = 0. This is
called the trivial linear relation.

Definition 3.4.2: Linear Independence

A list vy, ..., 0y of vectors in V is linearly independent if the only choice of ay, ..., a,;, € F that makes
a101 + ...+ a0y =01is a; = ... = ay = 0. In other words, it’s linearly independent if there is no nontrivial
linear relation among two vectors.

Theorem 3.4.1
Let S; € So c V. If S; is linearly dependent, then Ss is linearly dependent.

Proof: This is in exercise

Corollary 3.4.1
Let S; € S5 c V. If S5 is linearly independent, then S; is linearly independent.

Theorem 3.4.2

Let S C V be linearly independent, and let v € V \' S. Then S U {v} is linearly independent < v ¢
span(S).

Proof: (=) Suppose S U {v} is linearly independent. Assume for contradiction that v € span(S). Then
there exist scalars ¢1,...,¢, € Fand sq1,...,s,; € S such that

n
v = Z CiSi.
i=1
Rearranging gives
n
1-v+ Z(—Ci)si = 0.
i=1

This is a nontrivial linear relation among elements of S U {v}, contradicting linear independence. Hence

v ¢ span(S).

(&) Suppose v ¢ span(S). We show S U {v} is linearly independent. Consider a linear relation

n
av + Z cisi =0
i=1

with s; € S, a,c; € F. If a = 0, then we have er-lzl ¢;s; = 0. Since S is linearly independent, this implies all
¢; = 0, so the relation is trivial.
If a # 0, then we can solve for v:

14



which shows v € span(S), a contradiction. Hence the case a # 0 cannot occur, so the only possible relation
is trivial.
Therefore S U {v} is linearly independent.

3.5 Bases

Definition 3.5.1

A basis b for a vector space V is a subset b C V such that:
1. B is linearly independent
2. B spans V

If b is a basis for V, we say that the vectors in b form a basis of V.

Theorem 3.5.1

Let V be a vector space, and uy, ..., u, be distinct vectors in V. Then b = {uy,...,u,} is a basis of V if
and only if each v € V can be written uniquely as a linear combination of the vectors in b, i.e.

U=CuUy+--+cCcuuy
for unique scalars cy,...,Cy.

Proof: (=) Suppose b is a basis of V.
Since b spans V, every v € V can be written as

U=CiUy+---+cuuy
for some scalars ¢y, ..., c,. This proves existence.

For uniqueness, suppose
V=CiUy+ o+ Ccplly =diug + -+ dyuy,.

Subtracting, we obtain
0= (Cl - dl)”l t+--t (Cn - dn)urp

Since b is linearly independent, each coefficient must vanish, so ¢; = d; for all i. Thus the representation

is unique.

(&) Conversely, assume that every v € V can be written uniquely as a linear combination of the vectors
in b.
Since every vector has such a representation, b spans V.

To prove linear independence, suppose
0=ciuy +---+cuuy.

But also
0=0-u1+---+0-u,.

By uniqueness of representation, we must have ¢; = 0 for all i. If there are some other nontrivial linear
relation such that 0 = cyuy + ... + cyu,, where not all ¢; = 0, then it contradicts with the uniqueness
assumption. Thus b is linearly independent.

Therefore b is a basis of V.

15



Theorem 3.5.2

If V is a vector space with a finite spanning set, then V has a finite basis.

Proof: Let S be a finite spanning set of V. Our goal is to reduce S step by step until we obtain a basis.

Step 1: Check if S is linearly independent.
If S is already linearly independent, then S itself is a finite basis of V', and we are done.

Step 2: Remove one redundant vector if S is dependent.
Otherwise, S is linearly dependent. Thus there exist distinct vectors v1,...,v, € S and scalars ay,...,a, €
IF, not all zero, such that

a101 + asvs + -+ a,v, = 0.

Choose an index i with a; # 0. Then we can solve for v;:

v; = (—a;)7" Z aKk.

k#i

This shows that v; is a linear combination of the other vectors in S.

Step 3: Show that the span does not change.
Let S’ = S\ {v;}. We claim that
span(S) = span(S’).
Indeed, since S” C S, it follows immediately that span(S’) C span(S). Conversely, take any u € span(S).
Then

,
u=rco;+ Z cjuj, for some u; € S.
j=1

Substituting the expression for v; in terms of the other vectors, we obtain

.
u=c(-a;)™* Z axvg + Z G
=

k#i

which is a linear combination of elements of S”. Thus u € span(S’). Since u € span(S) was arbitrary, we
conclude span(S) € span(S’). Therefore span(S) = span(S’).

Step 4: Repeat the process.

We have shown how to remove one redundant vector while preserving the span. If S’ is linearly indepen-
dent, then S’ is a basis and we are finished. If S’ is still dependent, we can repeat the process, removing
one vector at a time while keeping the same span.

Step 5: Termination.
Since S is finite, this process must terminate after finitely many steps. The result is a subset B C S which
is finite, linearly independent, and still spans V. Thus B is a finite basis of V.

Special case. If V = {0}, then the empty set @ is by convention a basis, and it is finite.

Theorem 3.5.3

Suppose V has a spanning set G consisting of n elements. Let L C V be finite, linearly independent, with
m elements. Then:

1. m < n.
2. There exists a subset H C G of size n — m such that L U H spans V.

Proof: We argue by induction on m = |L|.

16



Base case: If m = 0, then L = (. Clearly 0 < n, and choosing H = G (of size n) gives LU H = G, which
spans V.

Inductive step: Assume the result holds for all linearly independent sets of size m. Now let L =
{v1,...,9m+1} be linearly independent. Then {vi,...,v;} is linearly independent, so by the inductive
hypothesis, there exist uy,...,Uy—y € G such that

{v1, .., 0 U{u, ..., Up—m}
spans V.
In particular, v,,4+1 can be expressed as
Umal = 0101+ + A0y + b1ty + - + by pylly—m .

Since L is linearly independent, not all b; can vanish. Without loss of generality, suppose by # 0. Then we
may solve for uy:

Uy = b{l(vmﬂ — (@101 + -+ AUy +bottg + - -+ + bn_mun_m)).
Hence uy € span({v1, ..., Oms1, U2, ..., Un-m})-
It follows that
V =span({v1,...,0m, 1, ..., up-m}) = span({v1, ..., Oms1, U2, ..., Un-m}).
Therefore, if we let H = {us, ..., u,—}, which has size n — (m + 1), we obtain L U H as a spanning set.

Thus the theorem holds for m + 1. By induction, it holds for all m.

Corollary 3.5.1

If V has a finite basis, then all bases of V are finite and have the same cardinality.

Proof: Let B,B’ be two bases of V. Since B’ spans V and B is linearly independent, the theorem gives
|B| < |B’|. Reversing the roles gives |B’| < |B|. Hence |B| = |B’|.

Finally, if V had one finite basis B and one infinite basis A, then picking |B| + 1 elements of A would give
a linearly independent set larger than B, contradicting the theorem. Thus all bases have the same finite
cardinality, called the dimension of V.

17



Chapter 4

Tutorial

4.1 Week 2 tutorial

Question 1: Problem 1. Q adjoin V3

1. Prove that the following set, endowed with the usual operations is a field:

Q3]={a+bV3|a,beQ}

2. Consider the map ¢@(a + bV3) = a — bV3. Prove that it is a field isomorphism (i.e.
Pz-2)=9@) ¢@) @E+z)=0@)+e )

3. Prove that Q[3] is the smallest number field to contain both Q and V3.

4. The above means, that Q[3] is the "smallest” field to extend the rational numbers to contain the
roots of the equation x? — 3 = 0. What does this make the complex numbers?

4.1.1 (i) Q¥ is a field

Definition 4.1.1: Definition of Q‘E

Q¥ = {a+bV3|a,beQ}

with the “usual” operations

(a+bV3)+(c+dV3)=(a+c)+(b+d)V3, (a + bV3)(c + dV3) = (ac + 3bd) + (ad + bc) V3.

Example 4.1.1 (Proof that QVBisa field)

Proof: e Closure. The formulas above show that a sum or a product of two elements again has
rational coefficients, hence lies in Q‘E.

e Additive identity and inverses.
0=0+0V3e Q‘E, —(a+bV3) = (-a) +(-b)V3 € Q‘E.

e Multiplicative identity.
1=1+0V3e Q‘/g.

18



e Non-zero multiplicative inverses. Let a + bV3 # 0. Then a? — 3b # 0 (otherwise (a/b)? = 3
would give a rational root of x? — 3). Hence

o _a-bV3
(Ll-i-b\/g) 1:m€Q\/§,

because (a + bV3)(a — bV/3) = a% — 3b2.

e Associativity, commutativity, distributivity. All follow from the corresponding properties of
R.

4.1.2 (ii) p(a + b\/g) =a—-bV3is a field isomorphism

Example 4.1.2 (Field automorphism ¢)

Proof: Let ¢ : QY% - QY3 be @(a+bV3)=a-bV3.

Additive homomorphism.
o((a+bV3) + (c +dV3)) = p((a+c) + (b +d)V3) = (a+¢) — (b +d)V3 = p(a + bV3) + p(c + dV3).
Multiplicative homomorphism.

o((a + bV3)(c + dV3)) = p((ac + 3bd) + (ad + bc)V3)
= (ac + 3bd) — (ad + bc)V3
= (a - bV3)(c — dV3)
=@a+ bV3) e(c+ dvV3).

Bijective. ¢ is its own inverse: @(¢(z)) = z for all z. Hence ¢ is bijective.

4.1.3 (iii) Minimality of QY3

Example 4.1.3 (The field Q‘E is the smallest field containing Q and \/2)
Proof: Let K be any field with Q € K and V3 € K. For a,b € Q C K we have

a+bV3eK

because K is closed under the field operations. Thus Q‘/g C K. Since K was arbitrary, Q‘E is contained in
every such field, i.e. it is the smallest field containing Q and V3.

4.1.4 (iv) Interpretation in terms of splitting fields

Example 4.1.4 (The role of Q‘E in the theory of splitting fields)

Proof: The polynomial x2 —3 has roots +V3. The field Q‘B contains both of them, hence it is a splitting
field of x? — 3 over Q. In general, for a polynomial f € Q* the smallest field containing all of its roots is
called the splitting field of f. By analogy, the complex numbers C are the smallest field extension of R
that contains the roots of *every* real polynomial; equivalently, C is an algebraic closure of R. (Over Q
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the analogous minimal algebraically closed field is the field of algebraic numbers, a subfield of C.)

Question 2: Problem 2. Characteristic p

Let IF be a field of characteristic p, meaning:

T+---+1

Prove that (a + b)P = a? +bP for all a,b € F
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