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0.1 Introduction

The course is mainly based on the book Linear Algebra 4th edition by S.H.Friedberg, coupled with A Readable
Introduction to Real Mathematics by F. Su
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Chapter 1

Week 1

1.1 Sets, Functions, Fields

Definition 1.1.1: Sets

A set is a collection of elements. If 𝑥 is in the set 𝑆, we write 𝑥 ∈ 𝑆. If not, we write 𝑥 ∉ 𝑆. Two ways of
defining a set:

1. Listing the objects in that set
𝑆 = {1, 2, 3, 6} = {2, 1, 3, 6}

Note:-

Note that the order of elements does not matter, and repeated elements are only listed once.

2. Describing or characterizing the elements of 𝑆

𝐴 = {𝑥 : 𝑥 is a positive integer dividing 6}

Note:-

𝐴 = 𝑆

Example 1.1.1

𝑃 = {𝑥 : 𝑥 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑏𝑒𝑟}

• 𝑍 integers

• 𝑄 the rational numbers

• 𝑅 the real numbers

Two sets are equal if they contain the same elements if 𝑆 and 𝑇 and equal, we write 𝑆 = 𝑇

Example 1.1.2

𝐵 = {−1, 0, 1, 2, 3, 4, 5, 6, 7}
𝐶 = {2, 3} = {𝑥 : 𝑥 is an integer between 2&3}
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Definition 1.1.2: Subset

If 𝑆 and 𝑇 are set such that all elements of 𝑠 are contained in 𝑇, we say that 𝑆 is a subset of 𝑇 and we
write 𝑆 ⊂ 𝑇
If 𝑆 is a subset of 𝑇 and 𝑆 ≠ 𝑇, we write 𝑆 ⊊ 𝑇 and say that 𝑆 is a proper subset of 𝑇

Definition 1.1.3: Empty Set

The empty set is the set containing no elements, denoted by ∅ or {}. If 𝑆 and 𝑇 are sets. 𝑆 ∪𝑇 = {𝑥 : 𝑥 ∈
𝑆 𝑜𝑟 𝑥 ∈ 𝑇} is called the union of 𝑆 and 𝑇. 𝑆 ∩ 𝑇 = {𝑥 : 𝑥 ∈ 𝑆 𝑎𝑛𝑑 𝑥 ∈ 𝑇} is called the intersection of 𝑆
and 𝑇.

Example 1.1.3

𝑁 = {𝑥 ∈ ℤ : 𝑥 > 0} = {1, 2, 3, 4...}
Let −𝑁 = {𝑥 ∈ ℤ : 𝑥 < 0} = {−1,−2,−3,−4...} then 𝑁 ∩ −𝑁 = ∅ and 𝑁 ∪ −𝑁 = {𝑥 ∈ ℤ : 𝑥 ≠ 0}. If we
have a list 𝑆1 , ..., 𝑆𝑘 of sets, we can write

𝑘⋃
𝑖=1

𝑆𝑖 = {𝑥 : 𝑥 ∈ 𝑆𝑖 for at least one of the 𝑆𝑖 , 𝑖 = 1, .., 𝑘}

𝑘⋂
𝑖=1

𝑆𝑖 = {𝑥 : 𝑥 ∈ 𝑆𝑖 for all of the 𝑆𝑖 , 𝑖 = 1, .., 𝑘}.
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Definition 1.1.4: Function

Consider two sets 𝐴 and 𝐵, and suppose that with each element x of 𝐴 there is associated, in some
manner, an element of 𝐵, which denoted by 𝑓 (𝑥). Then 𝑓 is said to be a function from 𝐴 to 𝐵, denoted
by 𝑓 : 𝐴→ 𝐵.

• The set 𝐴 is called the domain of 𝑓

• The set 𝐵 is called the codomain of 𝑓

• The elements 𝑓 (𝑥) are called the values of 𝑓

• The set of all values of 𝑓 is called the range of 𝑓

If 𝐸 ⊂ 𝐴, 𝑓 (𝐸) is defined to be the set of all elements 𝑓 (𝑥), for 𝑥 ∈ 𝐸. We call 𝑓 (𝐸) the image of 𝐸 under
𝑓 .
If 𝐸 ⊂ 𝐵, 𝑓 −1(𝐸) denotes the set of all 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) ∈ 𝐸. We call 𝑓 −1(𝐸) the preimage of 𝐸 under
𝑓 .

Definition 1.1.5: Equality of functions

Two functions 𝑓 , 𝑔 : 𝑆 → 𝑇 are equal if 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑆

Example 1.1.4

For example, let 𝑆 = {𝑥 ∈ ℝ : |𝑥| ⩾ 1} 𝑓 : 𝑆 → ℝ is the function s.t. 𝑓 (𝑥) = 1
𝑥2 . Then

• domain is 𝑆

• codomain is ℝ

• range is {𝑥 ∈ ℝ : 0 < 𝑥 < 1} ⊂ ℝ
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Definition 1.1.6: Injective, surjective, and bijective

If every element is the range of 𝑓 has a unique preimage, we say that 𝑓 is injective or one-to-one. In
notation:

𝑓 (𝑥1) = 𝑓 (𝑥2) ⇒ 𝑥1 = 𝑥2

A counter example would be 𝑓 (𝑥) = 𝑥2. If every element in the codomain is in the image, we say that 𝑓
is surjective (onto). In other words, the range equals the codomain. In notation:

∀𝑦 ∈ 𝐵, ∃ 𝑥 ∈ 𝐴 such that 𝑓 (𝑥) = 𝑦

If 𝑓 is surjective and injective, we say that 𝐹 is bijective or a bijection. It’s perfect pairing — each input
gives a unique output, and every element of the codomain is used.

Injective

a

b

c

1

2

3

d

Surjective

a

b

c

1

2

3

Bijective

a

b

c

1

2

3

If 𝑓 : 𝑆 → 𝑇 and 𝑈 ⊂ 𝑆 the restriction of 𝑓 to 𝑈 is denoted 𝑓 |𝑈 : 𝑈 → 𝑇. 𝑓 |𝑈 (𝑢) = 𝑓 (𝑢) for all 𝑢 ∈ 𝑈

Example 1.1.5

Let 𝑓 : Z → N be defined by 𝑓 (𝑥) = |𝑥| + 1. Then 𝑓 is surjective but not injective. The function 𝑓 |ℕ
is injective but not surjective because 1 is in it’s range but doesn’t have a preimage. Let Z⩾0 = {𝑥 ∈ Z :
𝑥 ⩾ 0}. Then 𝑓 |z⩾0 is both injective and surjective, hence a bijection.

Example 1.1.6 (Composite functions)

let 𝑆, 𝑇,𝑈 as sets,
𝑓 : 𝑆 → 𝑇, 𝑔 : 𝑇 → 𝑈

The composite 𝑔 ◦ 𝑓 : 𝑆 → 𝑈.

Note:-

Note that given 𝑆, 𝑇 and 𝑓 , 𝑔 : 𝑆 → 𝑆. 𝑓 ◦ 𝑔 doesn’t necessarily equal to 𝑔 ◦ 𝑓 . For example 𝑓 (𝑥) = 𝑥+1
and 𝑔(𝑥) = 2𝑥.

Example 1.1.7

Exercise: check that 𝑓 , 𝑔 is invertible and 𝑠 ∈ 𝑆, 𝑓 −1(𝑠) .
Is 𝑓 : ℝ → ℝ invertible?
𝑓 (𝑥) = 3𝑥 + 1 has inverse 𝑔(𝑥) = (𝑥 − 1)/3 Is 𝑓 : ℤ → ℤ invertible?
For 𝑓 (𝑧) = 3𝑧 + 1, the inverse 𝑔(𝑥) = (𝑥 − 1)/3 will make some of the output not integers. For example
𝑓 (𝑔(2)).

Question 1

Exercise: how to prove a function is invertible if it’s bijective?
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Note:-

The definition of field and properties are noted down in note for baby Rudin, thus disregard.

Definition 1.1.7: Equivalence relations

• F(1) Commutativity - 𝑎 + 𝑏 = 𝑏 + 𝑎 and 𝑎 · 𝑏 = 𝑏 · 𝑎

• F(2) Associativity - (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) and (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐)

• F(3) Existence of Identity Elements - There exists elements 0 ∈ 𝐹 and 1 ∈ 𝐹 such that 0+ 𝑎 = 𝑎
and 1 · 𝑎 = 𝑎. 0 is called the additive identity and 1 is the multiplicative identity. Note that
0 ≠ 1

• F(4) Existence of Inverses - For each 𝑎 ∈ 𝐹 there exists 𝑏 ∈ 𝐹 and nonzero 𝑐 ∈ 𝐹 such that
𝑎 + 𝑏 = 0 and 𝑎 · 𝑐 = 1

• F(5) Distributivity - 𝑎 · (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

Definition 1.1.8: Equivalence relations

Let 𝑆 be a set. A relation on 𝑆 is a subset 𝑅 ⊂ 𝑆 × 𝑆. We say a pair (𝑥, 𝑦) ∈ 𝑆 × 𝑆 satisfies the notation if
(𝑥, 𝑦) ∈ ℝ. We typically denote the relation ∼ and while 𝑥 ∼ 𝑦 if (𝑥, 𝑦) ∈ 𝑅. For example ∼ could be =

Definition 1.1.9

A relation on 𝑆 is an equivalence relation if it satisfies the following 3 properties ∀𝑥, 𝑡 ∈ 𝑆

• 𝑠 ∼ 𝑠

• 𝑠 ∼ 𝑡 ⇒ 𝑡 ∼ 𝑠

• 𝑠 ∼ 𝑡 and 𝑡 ∼ 𝑢 ⇒ 𝑠 ∼ 𝑢

Definition 1.1.10

If (𝑠,∼) is a set equipped with a equivalence relation and 𝑡 ∈ 𝑆, let 𝐶𝑡 = {𝑠 ∈ 𝑆 : 𝑠 ∼ 𝑡}

Theorem 1.1.1

Let (𝑠,∼) is a set equipped with an equivalence relation, then ∃ 𝑇 ⊂ 𝑆 such that

• 𝑆 =
⋃
𝑡∈𝑇 𝐶𝑡

• 𝐶𝑡 ∩ 𝐶𝑡′ = ∅ if 𝑡 ≠ 𝑡′

We call 𝑇 a set of representation for ∼
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Chapter 2

Week 2

2.1 Modular Arithmetic

Definition 2.1.1

Let 𝑚 ∈ ℕ. Let 𝑎, 𝑏 ∈ ℤ. We say that 𝑎 is congruent to 𝑏 (mod 𝑚), denoted 𝑎 ≡ 𝑏 (mod 𝑚). If 𝑚|(𝑏 − 𝑎).

Example 2.1.1

Let 𝑎 = 3, 𝑏 = 45. Then 𝑎 ≡ 𝑏 mod 2 and mod 3

Lemma 2.1.1 𝑎 ≡ 𝑏(𝑚) if and only if (iff) there exists 𝑘 ∈ ℤ such that 𝑎 = 𝑏 + 𝑘𝑚.

Proof: Suppose 𝑎 ≡ 𝑏(𝑚) then by definition 𝑚|𝑏 − 𝑎. This means that 𝑏 − 𝑎 is a multiple of 𝑚, so it can
be written as 𝑏 − 𝑎 = 𝑚𝑘 for some 𝑘 ∈ ℤ. Rearranging, we have 𝑏 = 𝑎 + 𝑚𝑘 or 𝑎 = 𝑏 + (−𝑘)𝑚. −𝑘 is our
desired multiple.
From another direction, suppose that 𝑎 = 𝑏 +𝑚𝑘 then 𝑏 − 𝑎 = −𝑚𝑘 which is divisible by m. By definition,
𝑎 ≡ 𝑏(𝑚).

Theorem 2.1.1 Let 𝑚 ∈ ℕ. For each 𝑎 ∈ ℤ, there exists a unique 𝑟 ∈ {0, . . . , 𝑚−1} such that 𝑎 ≡ 𝑟 (mod 𝑚).

Proof: We will prove that there exist unique integers 𝑘, 𝑟 such that 𝑎 = 𝑘𝑚 + 𝑟 with 0 ⩽ 𝑟 < 𝑚. By a
previous lemma, this implies 𝑎 ≡ 𝑟 (mod 𝑚).
Existence. Consider all multiples of 𝑚, {0,±𝑚,±2𝑚, . . . }, which cover the real line by the Archimedean
property. Since 𝑎 is an integer, there exists 𝑘 such that

𝑘𝑚 ⩽ 𝑎 < (𝑘 + 1)𝑚.

Subtracting 𝑘𝑚 gives 0 ⩽ 𝑎 − 𝑘𝑚 < 𝑚. Define 𝑟 = 𝑎 − 𝑘𝑚, then 𝑎 = 𝑘𝑚 + 𝑟 with 0 ⩽ 𝑟 < 𝑚.
Uniqueness. Suppose 𝑎 = 𝑘𝑚 + 𝑟 = 𝑘′𝑚 + 𝑟′ with 0 ⩽ 𝑟, 𝑟′ < 𝑚. Then 𝑟 − 𝑟′ = (𝑘′ − 𝑘)𝑚, so 𝑟 − 𝑟′ is a
multiple of 𝑚. On the other hand, since both 𝑟 and 𝑟′ lie in [0, 𝑚), their difference satisfies

−𝑚 < 𝑟 − 𝑟′ < 𝑚.

The only multiple of 𝑚 in this range is 0, hence 𝑟 − 𝑟′ = 0 =⇒ 𝑟 = 𝑟′ and then 𝑘 = 𝑘′.

For the equivalence relation of congruence modulo 𝑚, we have

ℤ = 𝐶0 ∪ 𝐶1 ∪ · · · ∪ 𝐶𝑚−1 ,

where 𝐶𝑟 = {𝑎 ∈ ℤ : 𝑎 ≡ 𝑟 (mod 𝑚)}. We call {0, . . . , 𝑚 − 1} the standard representatives.
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Theorem 2.1.2 If 𝑎 ≡ 𝑏(𝑚) and 𝑐 ≡ 𝑑(𝑚), then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚), 𝑎 · 𝑐 ≡ 𝑏 · 𝑑(𝑚)

Proof: By lemma, 𝑎 = 𝑏 + 𝑘𝑚, 𝑐 = 𝑑 + 𝑘′𝑚.

𝑎 + 𝑐 = 𝑏 + 𝑘𝑚 + 𝑑 + 𝑘′𝑚 = 𝑏 + 𝑑 + (𝑘 + 𝑘′)𝑚 ≡ 𝑏 + 𝑑(𝑚)

𝑎 · 𝑐 = (𝑏 + 𝑘𝑚)(𝑑 + 𝑘′𝑚) = 𝑏𝑑 + 𝑘𝑚𝑑 + 𝑘′𝑚𝑏 + 𝑘𝑘′𝑚2 = 𝑏𝑑 + 𝑚(𝑘𝑑 + 𝑘′𝑏 + 𝑘𝑘′𝑚) ≡ 𝑏𝑑(𝑚)

Definition 2.1.2

The integers modulo 𝑚, denoted ℤ/𝑚ℤ is the set of equivalence classes mod 𝑚. We will denote it
ℤ/𝑚ℤ = {0̄, 1̄, ..., ¯𝑚 − 1}. Thanks to the last theorem, ℤ/𝑚ℤ is equipped with addition and multiplication.
Regular reputation in ℤ+ remainder after division by 𝑚.

Definition 2.1.3

A prime number is 𝑝 ∈ ℕ, 𝑝 > 1, and s.t. For all 𝑥, 𝑦 ∈ ℤ, if 𝑝 ∤ 𝑥, 𝑝 ∤ 𝑦 ⇒ 𝑝 ∤ 𝑥𝑦

Theorem 2.1.3 ℤ/𝑚ℤ is a field iff 𝑚 is a prime

Proof: Suppose that 𝑚 is not a prime. Then ∃ 0 < 𝑟, 𝑠 < 𝑚, such that 𝑚 = 𝑟 ·𝑠. Assume for contradiction
that there ∃ 𝑡 , 𝑢 s.t. 𝑟 · 𝑡 = 1, 𝑠 · 𝑢 = 1 which are the existence of multiplicative inverses. Then in ℤ/𝑚ℤ.
1 = 1 · 1 = 𝑠 · 𝑢 · 𝑟 · 𝑡 = 𝑢 · 𝑡 · 𝑟 · 𝑠 = 𝑢 · 𝑡 · 0 = 0. Since 1 ≠ 0, this is a contradiction. So 𝑚 is not prime
⇒ ℤ/𝑚ℤ is not a field.
Assuming that 𝑚 is prime.

Lemma 2.1.2 if 𝑝 is prime and 𝑝 ∤ 𝑥, 𝑝 ∤ 𝑦, 𝑡ℎ𝑒𝑛𝑝 ∤ 𝑥𝑦

Claim 2.1.1 Let 𝑥 ∈ ℤ/𝑚ℤ and 𝑚 is prime then if 𝑥 ≠ 0

Proof: Let 𝑎, 𝑏 ∈ ℤ, suppose 𝑎 ≠ 𝑏(𝑚), then 𝑚 ∤ 𝑎 − 𝑏. Fix a representative of 𝑥 ∈ ℤ call it 𝑥̃.
Since 𝑥 ≠ 0, 𝑚 ∤ 𝑥̃. Since 𝑚 is prime, 𝑚 ∤ 𝑥̃(𝑎 − 𝑏), so 𝑥̃𝑎 . 𝑥̃𝑏 mod 𝑚. I.e 𝑥𝑎 ≠ 𝑥𝑏 ∈ ℤ/𝑚ℤ. This
proves the claim.

We know multiplication by 𝑥 is injective. By HW1, Q1(b) is also surjective. In other words, ∀𝑠 ∈
ℤ/𝑚ℤ, ∃ 𝑦 s.t. 𝑥𝑦 = 𝑠. In particular, ∃ 𝑦 s.t. 𝑥𝑦 = 1. It follows that any element 𝑥 ≠ 0 has a
multiplicative inverse, so if 𝑚 is prime, ℤ/𝑚ℤ is a field. Upshot: ℤ/𝑝ℤ is a field for all prime. We will
denote it 𝔽𝑝

Once proved that multiplicative and additive inverses of 𝑎 are unique in a field, we’ll denote them respec-
tively by 𝑎−1 and −𝑎.
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Chapter 3

Week 3

3.1 Vector Space

Definition 3.1.1: Vector Space

Let 𝔽 be a field. A vector space over 𝔽 is a set 𝑉 equipped with two operations:

1. + : 𝑉 ×𝑉 → 𝑉, (𝑣, 𝑤) ↦→ 𝑣 + 𝑤

2. 𝔽 ×𝑉 → 𝑉, (𝑎, 𝑣) ↦→ 𝑎𝑣, where 𝑎 is a scalar product of 𝑣.

Elements of 𝔽 will be called scalars. Satisfying that for all 𝑥, 𝑦, 𝑧 ∈ 𝑉, 𝑎, 𝑏 ∈ 𝔽:

1. Commutativity of addition 𝑥 + 𝑦 = 𝑦 + 𝑥

2. Associativity (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)

3. Additive identity ∃ 0 ∈ 𝑉 s.t. 0 + 𝑥 = 𝑥 ∀𝑥 ∈ 𝑉

4. Inverses ∀𝑥 ∈ 𝑉, ∃ 𝑦 s.t 𝑥 + 𝑦 = 0

5. Multiplicative identity 1𝑥 = 𝑥

6. Associativity of multiplication 𝑎(𝑏𝑥) = (𝑎𝑏)𝑥

7. Distributivity of scalar multiplication over vector addition 𝑎(𝑥 + 𝑦) = 𝑎𝑥 + 𝑎𝑦

8. Distributivity of scalar addition over scalar multiplication(𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥

Example 3.1.1

𝔽𝑛 = {(𝑎1 , 𝑎2 , ..., 𝑎𝑛) : 𝑎𝑖 ∈ 𝔽 1 ⩽ 𝑖 ⩽ 𝑛}
𝑎𝑖 is the ith coordinate of (𝑎1 , ..., 𝑎𝑛)

(𝑎1 , ..., 𝑎𝑛) + (𝑏1 , ..., 𝑏𝑛) = (𝑎1 + 𝑏1 , ..., 𝑎𝑛 + 𝑏𝑛)

𝑐 ∈ 𝔽, 𝑐(𝑎1 , ..., 𝑎𝑛) = (𝑐𝑎1 , ..., 𝑐𝑎𝑛)

Example 3.1.2

Define: An 𝑚 × 𝑛 matrix with entries in 𝔽 is an array of elements of 𝔽 with 𝑚 rows and 𝑛 columns.
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𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
Example 3.1.3

Let 𝑆 be a non empty set. Let ℱ (𝑆, 𝐹) be the set of all functions 𝑓 : 𝑆 → 𝐹.

ℱ (𝑆, 𝐹) = { 𝑓 : 𝑆 → 𝐹}

Definition 3.1.2: Properties of vector space

Let 𝑉 be a vector space over 𝔽. Then

• If 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑥 + 𝑧 = 𝑦 + 𝑧 then 𝑥 = 𝑦

• The vector 0 ∈ 𝑉 is unique

• Let 𝑥 ∈ 𝑉. The vector 𝑦 s.t. 𝑥 + 𝑦 = 0 is unique, call it −𝑥.

These properties could be derived from the axioms.

Theorem 3.1.1

Let 𝑉 be a vector space over 𝔽. Then

1. 0𝑣 = 0 ∀𝑣 ∈ 𝑉

2. (−𝑎)𝑣 = −(𝑎𝑣) = 𝑎(−𝑣) ∀𝑎 ∈ 𝔽, 𝑣 ∈ 𝑉

3. 0𝑎 = 0

Note:-

Note that the proofs are in notes for baby Rudin

Proof: 1.
0𝑣 = (0 + 0)𝑣 = 0𝑣 + 0𝑣

By the cancellation property, 0𝑣 on both sides can be canceled, so 0 = 0𝑣
2.

(−𝑎)𝑣 + 𝑎𝑣 = 𝑣(−𝑎 + 𝑎) = 0𝑣 = 0

⇒ (−𝑎)𝑣 = 𝑎𝑣

By doing it the other way round, we get 𝑎𝑣 = 𝑎(−𝑣)
3.

0𝑎 + 0𝑎 = (0 + 0)𝑎 = 0𝑎

Since given 𝑥 + 𝑦 = 𝑥 ⇒ 𝑦 = 0, 0𝑎 = 0

Definition 3.1.3: x-y

Now we can define 𝑥 − 𝑦 by 𝑥 + (−𝑦)
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Definition 3.1.4: Subspaces

Let 𝑉 be a vector space over 𝔽. We say that 𝑊 ⊂ 𝑉 is a subspace of 𝑉 if it is a vector space over 𝔽

under the restriction of the operations of 𝑉.
Since the operations on 𝑉 satisfy the properties above, it is only needed to check a few things.

Theorem 3.1.2

Let 𝑉 be a vector space. Then 𝑊 ⊂ 𝑉 is a subspace iff the following hold.

1. 𝑊 ≠ ∅

2. ∀𝑥, 𝑦 ∈𝑊, 𝑥 + 𝑦 ∈𝑊 (closed under addition)

3. 𝑐 ∈ 𝔽, 𝑥 ∈𝑊, ⇒ 𝑐𝑥 ∈𝑊 (closed under scalar multiplication)

Proof: (Direction ⇐) Assume that 𝑊 satisfies (2) and (3). Then the operations + and · on 𝑊 are
well-defined.
Axioms 1,2,5,6,7,8 all automatically hold since the operation on 𝑊 are defined from those on 𝑉 (inherited
from). In other words, additive identity and inverses are the axioms to be checked.
Additive identity By (1) ∃𝑤 ∈𝑊 . Then 0𝑤 = 0 so 𝑊 has a 0.
Inverses Let 𝑤 ∈𝑊 . Then (−1)𝑤 ∈𝑊 by (3).

(−1)𝑤 + 𝑤 = (−1 + 1)𝑤 = 0𝑤 = 0

So (−1)𝑤 is the additive inverse of 𝑤 and is contained in 𝑊 .

(Direction ⇒) Suppose 𝑊 is a subspace. Then 0 ∈𝑊 and by definition ∀𝑥, 𝑦 ∈𝑊, 𝑥 + 𝑦 ∈𝑊 and ∀𝑐 ∈ 𝔽

and 𝑥 ∈𝑊 , 𝑐𝑥 ∈𝑊 .

Corollary 3.1.1

If 𝑊 ⊂ 𝑉 is a subspace, the 0𝑤 = 0𝑣 and in particular 0𝑣 ∈𝑊 .

Example 3.1.4

ℝ2 = {(𝑥, 𝑦) : 𝑥, 𝑦 ∈ ℝ}
𝑊 = (𝑥, 𝑥) : 𝑥 ∈ ℝ

Theorem 3.1.3

The intersection of two subspaces is a subspace.

Proof: Let 𝑊1 ,𝑊2 be subspace of 𝑉

• 0 ∈𝑊1 ∩𝑊2

• If 𝑥, 𝑦 ∈𝑊1 ∩𝑊2 then
𝑥 + 𝑦 ∈𝑊1 since 𝑊1 is a subspace

𝑥 + 𝑦 ∈𝑊2 since 𝑊2 is a subspace

⇒ 𝑥 + 𝑦 ∈𝑊1 ∩𝑊2.

• if 𝑥 ∈𝑊1∩𝑊2 , 𝑐 ∈ 𝔽

𝑐𝑥 ∈𝑊1 since 𝑊1 is a subspace
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𝑐𝑥 ∈𝑊2 since 𝑊2 is a subspace

⇒ 𝑐𝑥 ∈𝑊1 ∩𝑊2 ⇒𝑊1 ∩𝑊2 is a field.

3.2 Linear combination

Definition 3.2.1

Let 𝑉 be a vector space and 𝑆 ⊆ 𝑉, 𝑆 ≠ ∅. A vector 𝑣 ∈ 𝑉 is a linear combination of elements of 𝑆 is there
exists 𝑢1 , ..., 𝑢𝑛 ∈ 𝑆, 𝑑1 , ...𝑑𝑛 ∈ 𝐹 such that 𝑣 = 𝑎1𝑢1 + ... + 𝑎𝑛𝑢𝑛 . We say that 𝑣 is a linear combination of
𝑢1 , ...𝑢𝑛 .The 𝑎 are called the coefficients.

Example 3.2.1

Let 𝑉 = 𝑃(𝑄) = {𝑎1𝑥, ..., 𝑎𝑛𝑥𝑛 : 𝑎𝑥 ∈ ℚ} be a vector space. Then 3𝑥2 + 1 is a linear combination of 𝑥 and
1. The coefficients are 3, 1.

3.3 Span

Definition 3.3.1

Let 𝑆 be a non empty set be a subset of 𝑉. The span of 𝑆, denoted span(𝑆) is the set of all linear
combinations of elements of 𝑆. If 𝑠𝑝𝑎𝑛(𝑆) = 𝑉, we say that 𝑆 spans 𝑉.

Example 3.3.1

Let 𝑉 = ℝ3 what’s the span for (1, 0, 1), (0, 0, 3)

𝑎, 0, 𝑐, 𝑎, 𝑐 ∈ ℝ

Theorem 3.3.1

The span of any 𝑆 ⊂ 𝑉 is a subspace 𝑊 such that 𝑆 ⊂ 𝑊 . Moreover, any subspace containing 𝑆 will also
contain 𝑊 .

Proof: We will check the three properties of subspace:

• 𝑠𝑝𝑎𝑛(𝑆) is not empty by definition.

• If 𝑉 =
∑𝑛
𝑖=1 𝑎 𝑗𝑢𝑗 , 𝑤 =

∑𝑚
𝑗=1 𝑐 𝑗𝑢𝑗 for 𝑢𝑖 , 𝑢𝑗 ∈ 𝑆, then 𝑢 + 𝑤 =

∑𝑛
𝑖=1 𝑎𝑖𝑢𝑖 +

∑𝑚
𝑗=1 𝑐 𝑗𝑢𝑗 which is a linear

combination of elements of 𝑆.

• If 𝑐 ∈ 𝐹 and 𝑣 =
∑𝑛
𝑖=1 𝑎𝑖𝑢𝑖 with 𝑢𝑖 ∈ 𝑆, then 𝑐𝑣 =

∑𝑛
𝑖=1 𝑐𝑎𝑖𝑢𝑖 which is a linear combination of elements

of 𝑆 so 𝑐𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑠)). 𝑆 ⊂ 𝑆
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3.4 Linear Independence/Dependence

Definition 3.4.1: Linear relation

Let 𝑉 be a vector space over 𝔽. A subset 𝑆 ⊂ 𝑉 is linearly dependent if there exists 𝑠1 , ..., 𝑠𝑛 ∈ 𝑆 and
𝑐1 , ..., 𝑐𝑛 ∈ 𝔽, not all zero such that

𝑐1𝑠1 + ... + 𝑐𝑛𝑠𝑛 = 0

We call such an expression a linear relation. We can always do this with 𝑐1 = 𝑐2 = ... = 𝑐𝑛 = 0. This is
called the trivial linear relation.

Definition 3.4.2: Linear Independence

A list 𝑣1 , ..., 𝑣𝑚 of vectors in 𝑉 is linearly independent if the only choice of 𝑎1 , ..., 𝑎𝑚 ∈ 𝔽 that makes
𝑎1𝑣1 + ...+ 𝑎𝑚𝑣𝑚 = 0 is 𝑎1 = ... = 𝑎𝑚 = 0. In other words, it’s linearly independent if there is no nontrivial
linear relation among two vectors.

Theorem 3.4.1

Let 𝑆1 ⊂ 𝑆2 ⊂ 𝑉. If 𝑆1 is linearly dependent, then 𝑆2 is linearly dependent.

Proof: This is in exercise

Corollary 3.4.1

Let 𝑆1 ⊂ 𝑆2 ⊂ 𝑉. If 𝑆2 is linearly independent, then 𝑆1 is linearly independent.

Theorem 3.4.2

Let 𝑆 ⊂ 𝑉 be linearly independent, and let 𝑣 ∈ 𝑉 \ 𝑆. Then 𝑆 ∪ {𝑣} is linearly independent ⇐⇒ 𝑣 ∉

𝑠𝑝𝑎𝑛(𝑆).

Proof: (⇒) Suppose 𝑆 ∪ {𝑣} is linearly independent. Assume for contradiction that 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑆). Then
there exist scalars 𝑐1 , . . . , 𝑐𝑛 ∈ 𝔽 and 𝑠1 , . . . , 𝑠𝑛 ∈ 𝑆 such that

𝑣 =

𝑛∑
𝑖=1

𝑐𝑖𝑠𝑖 .

Rearranging gives

1 · 𝑣 +
𝑛∑
𝑖=1

(−𝑐𝑖)𝑠𝑖 = 0.

This is a nontrivial linear relation among elements of 𝑆 ∪ {𝑣}, contradicting linear independence. Hence
𝑣 ∉ 𝑠𝑝𝑎𝑛(𝑆).

(⇐) Suppose 𝑣 ∉ 𝑠𝑝𝑎𝑛(𝑆). We show 𝑆 ∪ {𝑣} is linearly independent. Consider a linear relation

𝑎𝑣 +
𝑛∑
𝑖=1

𝑐𝑖𝑠𝑖 = 0

with 𝑠𝑖 ∈ 𝑆, 𝑎, 𝑐𝑖 ∈ 𝔽. If 𝑎 = 0, then we have
∑𝑛
𝑖=1 𝑐𝑖𝑠𝑖 = 0. Since 𝑆 is linearly independent, this implies all

𝑐𝑖 = 0, so the relation is trivial.
If 𝑎 ≠ 0, then we can solve for 𝑣:

𝑣 =

𝑛∑
𝑖=1

(
− 𝑐𝑖
𝑎

)
𝑠𝑖 ,
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which shows 𝑣 ∈ 𝑠𝑝𝑎𝑛(𝑆), a contradiction. Hence the case 𝑎 ≠ 0 cannot occur, so the only possible relation
is trivial.
Therefore 𝑆 ∪ {𝑣} is linearly independent.

3.5 Bases

Definition 3.5.1

A basis 𝑏 for a vector space 𝑉 is a subset 𝑏 ⊂ 𝑉 such that:

1. 𝐵 is linearly independent

2. 𝐵 spans 𝑉

If 𝑏 is a basis for 𝑉, we say that the vectors in 𝑏 form a basis of 𝑉.

Theorem 3.5.1

Let 𝑉 be a vector space, and 𝑢1 , . . . , 𝑢𝑛 be distinct vectors in 𝑉. Then 𝑏 = {𝑢1 , . . . , 𝑢𝑛} is a basis of 𝑉 if
and only if each 𝑣 ∈ 𝑉 can be written uniquely as a linear combination of the vectors in 𝑏, i.e.

𝑣 = 𝑐1𝑢1 + · · · + 𝑐𝑛𝑢𝑛

for unique scalars 𝑐1 , . . . , 𝑐𝑛 .

Proof: (⇒) Suppose 𝑏 is a basis of 𝑉.
Since 𝑏 spans 𝑉, every 𝑣 ∈ 𝑉 can be written as

𝑣 = 𝑐1𝑢1 + · · · + 𝑐𝑛𝑢𝑛

for some scalars 𝑐1 , . . . , 𝑐𝑛 . This proves existence.

For uniqueness, suppose
𝑣 = 𝑐1𝑢1 + · · · + 𝑐𝑛𝑢𝑛 = 𝑑1𝑢1 + · · · + 𝑑𝑛𝑢𝑛 .

Subtracting, we obtain
0 = (𝑐1 − 𝑑1)𝑢1 + · · · + (𝑐𝑛 − 𝑑𝑛)𝑢𝑛 .

Since 𝑏 is linearly independent, each coefficient must vanish, so 𝑐𝑖 = 𝑑𝑖 for all 𝑖. Thus the representation
is unique.

(⇐) Conversely, assume that every 𝑣 ∈ 𝑉 can be written uniquely as a linear combination of the vectors
in 𝑏.
Since every vector has such a representation, 𝑏 spans 𝑉.

To prove linear independence, suppose

0 = 𝑐1𝑢1 + · · · + 𝑐𝑛𝑢𝑛 .

But also
0 = 0 · 𝑢1 + · · · + 0 · 𝑢𝑛 .

By uniqueness of representation, we must have 𝑐𝑖 = 0 for all 𝑖. If there are some other nontrivial linear
relation such that 0 = 𝑐1𝑢1 + ... + 𝑐𝑛𝑢𝑛 , where not all 𝑐𝑖 = 0, then it contradicts with the uniqueness
assumption. Thus 𝑏 is linearly independent.

Therefore 𝑏 is a basis of 𝑉.
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Theorem 3.5.2

If 𝑉 is a vector space with a finite spanning set, then 𝑉 has a finite basis.

Proof: Let 𝑆 be a finite spanning set of 𝑉. Our goal is to reduce 𝑆 step by step until we obtain a basis.

Step 1: Check if 𝑆 is linearly independent.
If 𝑆 is already linearly independent, then 𝑆 itself is a finite basis of 𝑉, and we are done.

Step 2: Remove one redundant vector if 𝑆 is dependent.
Otherwise, 𝑆 is linearly dependent. Thus there exist distinct vectors 𝑣1 , . . . , 𝑣𝑛 ∈ 𝑆 and scalars 𝑎1 , . . . , 𝑎𝑛 ∈
𝔽, not all zero, such that

𝑎1𝑣1 + 𝑎2𝑣2 + · · · + 𝑎𝑛𝑣𝑛 = 0.

Choose an index 𝑖 with 𝑎𝑖 ≠ 0. Then we can solve for 𝑣𝑖 :

𝑣𝑖 = (−𝑎𝑖)−1
∑
𝑘≠𝑖

𝑎𝑘𝑣𝑘 .

This shows that 𝑣𝑖 is a linear combination of the other vectors in 𝑆.

Step 3: Show that the span does not change.
Let 𝑆′ = 𝑆 \ {𝑣𝑖}. We claim that

𝑠𝑝𝑎𝑛(𝑆) = 𝑠𝑝𝑎𝑛(𝑆′).
Indeed, since 𝑆′ ⊆ 𝑆, it follows immediately that 𝑠𝑝𝑎𝑛(𝑆′) ⊆ 𝑠𝑝𝑎𝑛(𝑆). Conversely, take any 𝑢 ∈ 𝑠𝑝𝑎𝑛(𝑆).
Then

𝑢 = 𝑐𝑣𝑖 +
𝑟∑
𝑗=1

𝑐 𝑗𝑢𝑗 , for some 𝑢𝑗 ∈ 𝑆.

Substituting the expression for 𝑣𝑖 in terms of the other vectors, we obtain

𝑢 = 𝑐(−𝑎𝑖)−1
∑
𝑘≠𝑖

𝑎𝑘𝑣𝑘 +
𝑟∑
𝑗=1

𝑐 𝑗𝑢𝑗 ,

which is a linear combination of elements of 𝑆′. Thus 𝑢 ∈ 𝑠𝑝𝑎𝑛(𝑆′). Since 𝑢 ∈ 𝑠𝑝𝑎𝑛(𝑆) was arbitrary, we
conclude 𝑠𝑝𝑎𝑛(𝑆) ⊆ 𝑠𝑝𝑎𝑛(𝑆′). Therefore 𝑠𝑝𝑎𝑛(𝑆) = 𝑠𝑝𝑎𝑛(𝑆′).

Step 4: Repeat the process.
We have shown how to remove one redundant vector while preserving the span. If 𝑆′ is linearly indepen-
dent, then 𝑆′ is a basis and we are finished. If 𝑆′ is still dependent, we can repeat the process, removing
one vector at a time while keeping the same span.

Step 5: Termination.
Since 𝑆 is finite, this process must terminate after finitely many steps. The result is a subset 𝐵 ⊆ 𝑆 which
is finite, linearly independent, and still spans 𝑉. Thus 𝐵 is a finite basis of 𝑉.

Special case. If 𝑉 = {0}, then the empty set ∅ is by convention a basis, and it is finite.

Theorem 3.5.3

Suppose 𝑉 has a spanning set 𝐺 consisting of 𝑛 elements. Let 𝐿 ⊂ 𝑉 be finite, linearly independent, with
𝑚 elements. Then:

1. 𝑚 ⩽ 𝑛.

2. There exists a subset 𝐻 ⊂ 𝐺 of size 𝑛 − 𝑚 such that 𝐿 ∪ 𝐻 spans 𝑉.

Proof: We argue by induction on 𝑚 = |𝐿|.
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Base case: If 𝑚 = 0, then 𝐿 = ∅. Clearly 0 ⩽ 𝑛, and choosing 𝐻 = 𝐺 (of size 𝑛) gives 𝐿 ∪ 𝐻 = 𝐺, which
spans 𝑉.

Inductive step: Assume the result holds for all linearly independent sets of size 𝑚. Now let 𝐿 =

{𝑣1 , . . . , 𝑣𝑚+1} be linearly independent. Then {𝑣1 , . . . , 𝑣𝑚} is linearly independent, so by the inductive
hypothesis, there exist 𝑢1 , . . . , 𝑢𝑛−𝑚 ∈ 𝐺 such that

{𝑣1 , . . . , 𝑣𝑚} ∪ {𝑢1 , . . . , 𝑢𝑛−𝑚}

spans 𝑉.

In particular, 𝑣𝑚+1 can be expressed as

𝑣𝑚+1 = 𝑎1𝑣1 + · · · + 𝑎𝑚𝑣𝑚 + 𝑏1𝑢1 + · · · + 𝑏𝑛−𝑚𝑢𝑛−𝑚 .

Since 𝐿 is linearly independent, not all 𝑏 𝑗 can vanish. Without loss of generality, suppose 𝑏1 ≠ 0. Then we
may solve for 𝑢1:

𝑢1 = 𝑏−11

(
𝑣𝑚+1 − (𝑎1𝑣1 + · · · + 𝑎𝑚𝑣𝑚 + 𝑏2𝑢2 + · · · + 𝑏𝑛−𝑚𝑢𝑛−𝑚)

)
.

Hence 𝑢1 ∈ 𝑠𝑝𝑎𝑛
(
{𝑣1 , . . . , 𝑣𝑚+1 , 𝑢2 , . . . , 𝑢𝑛−𝑚}

)
.

It follows that

𝑉 = 𝑠𝑝𝑎𝑛
(
{𝑣1 , . . . , 𝑣𝑚 , 𝑢1 , . . . , 𝑢𝑛−𝑚}

)
= 𝑠𝑝𝑎𝑛

(
{𝑣1 , . . . , 𝑣𝑚+1 , 𝑢2 , . . . , 𝑢𝑛−𝑚}

)
.

Therefore, if we let 𝐻 = {𝑢2 , . . . , 𝑢𝑛−𝑚}, which has size 𝑛 − (𝑚 + 1), we obtain 𝐿 ∪ 𝐻 as a spanning set.

Thus the theorem holds for 𝑚 + 1. By induction, it holds for all 𝑚.

Corollary 3.5.1

If 𝑉 has a finite basis, then all bases of 𝑉 are finite and have the same cardinality.

Proof: Let 𝐵, 𝐵′ be two bases of 𝑉. Since 𝐵′ spans 𝑉 and 𝐵 is linearly independent, the theorem gives
|𝐵| ⩽ |𝐵′|. Reversing the roles gives |𝐵′| ⩽ |𝐵|. Hence |𝐵| = |𝐵′|.
Finally, if 𝑉 had one finite basis 𝐵 and one infinite basis 𝐴, then picking |𝐵| + 1 elements of 𝐴 would give
a linearly independent set larger than 𝐵, contradicting the theorem. Thus all bases have the same finite
cardinality, called the dimension of 𝑉.
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Chapter 4

Tutorial

4.1 Week 2 tutorial

Question 1: Problem 1. ℚ adjoin
√
3

1. Prove that the following set, endowed with the usual operations is a field:

ℚ[3] = {𝑎 + 𝑏
√
3 | 𝑎, 𝑏 ∈ ℚ}

2. Consider the map 𝜑(𝑎 + 𝑏
√
3) = 𝑎 − 𝑏

√
3. Prove that it is a field isomorphism (i.e.

𝜑 (𝑧 · 𝑧′) = 𝜑(𝑧) · 𝜑 (𝑧′) 𝜑 (𝑧 + 𝑧′) = 𝜑(𝑧) + 𝜑 (𝑧′)
)

3. Prove that ℚ[3] is the smallest number field to contain both ℚ and
√
3.

4. The above means, that ℚ[3] is the ”smallest” field to extend the rational numbers to contain the
roots of the equation 𝑥2 − 3 = 0. What does this make the complex numbers?

4.1.1 (i) ℚ
√
3 is a field

Definition 4.1.1: Definition of ℚ
√
3

ℚ
√
3 := { 𝑎 + 𝑏

√
3 | 𝑎, 𝑏 ∈ ℚ }

with the “usual” operations

(𝑎 + 𝑏
√
3) + (𝑐 + 𝑑

√
3) = (𝑎 + 𝑐) + (𝑏 + 𝑑)

√
3, (𝑎 + 𝑏

√
3)(𝑐 + 𝑑

√
3) = (𝑎𝑐 + 3𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)

√
3.

Example 4.1.1 (Proof that ℚ
√
3 is a field)

Proof: • Closure. The formulas above show that a sum or a product of two elements again has

rational coefficients, hence lies in ℚ
√
3.

• Additive identity and inverses.

0 = 0 + 0
√
3 ∈ ℚ

√
3 , −(𝑎 + 𝑏

√
3) = (−𝑎) + (−𝑏)

√
3 ∈ ℚ

√
3.

• Multiplicative identity.

1 = 1 + 0
√
3 ∈ ℚ

√
3.
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• Non-zero multiplicative inverses. Let 𝑎 + 𝑏
√
3 ≠ 0. Then 𝑎2 − 3𝑏2 ≠ 0 (otherwise (𝑎/𝑏)2 = 3

would give a rational root of 𝑥2 − 3). Hence

(𝑎 + 𝑏
√
3)−1 =

𝑎 − 𝑏
√
3

𝑎2 − 3𝑏2
∈ ℚ

√
3 ,

because (𝑎 + 𝑏
√
3)(𝑎 − 𝑏

√
3) = 𝑎2 − 3𝑏2.

• Associativity, commutativity, distributivity. All follow from the corresponding properties of
ℝ.

4.1.2 (ii) 𝜑(𝑎 + 𝑏
√
3) = 𝑎 − 𝑏

√
3 is a field isomorphism

Example 4.1.2 (Field automorphism 𝜑)

Proof: Let 𝜑 : ℚ
√
3 → ℚ

√
3 be 𝜑(𝑎 + 𝑏

√
3) = 𝑎 − 𝑏

√
3.

Additive homomorphism.

𝜑
(
(𝑎 + 𝑏

√
3) + (𝑐 + 𝑑

√
3)
)
= 𝜑

(
(𝑎 + 𝑐) + (𝑏 + 𝑑)

√
3
)
= (𝑎 + 𝑐) − (𝑏 + 𝑑)

√
3 = 𝜑(𝑎 + 𝑏

√
3) + 𝜑(𝑐 + 𝑑

√
3).

Multiplicative homomorphism.

𝜑
(
(𝑎 + 𝑏

√
3)(𝑐 + 𝑑

√
3)
)
= 𝜑

(
(𝑎𝑐 + 3𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)

√
3
)

= (𝑎𝑐 + 3𝑏𝑑) − (𝑎𝑑 + 𝑏𝑐)
√
3

= (𝑎 − 𝑏
√
3)(𝑐 − 𝑑

√
3)

= 𝜑(𝑎 + 𝑏
√
3)𝜑(𝑐 + 𝑑

√
3).

Bijective. 𝜑 is its own inverse: 𝜑(𝜑(𝑧)) = 𝑧 for all 𝑧. Hence 𝜑 is bijective.

4.1.3 (iii) Minimality of ℚ
√
3

Example 4.1.3 (The field ℚ
√
3 is the smallest field containing ℚ and

√
3)

Proof: Let 𝐾 be any field with ℚ ⊆ 𝐾 and
√
3 ∈ 𝐾. For 𝑎, 𝑏 ∈ ℚ ⊆ 𝐾 we have

𝑎 + 𝑏
√
3 ∈ 𝐾

because 𝐾 is closed under the field operations. Thus ℚ
√
3 ⊆ 𝐾. Since 𝐾 was arbitrary, ℚ

√
3 is contained in

every such field, i.e. it is the smallest field containing ℚ and
√
3.

4.1.4 (iv) Interpretation in terms of splitting fields

Example 4.1.4 (The role of ℚ
√
3 in the theory of splitting fields)

Proof: The polynomial 𝑥2−3 has roots ±
√
3. The field ℚ

√
3 contains both of them, hence it is a splitting

field of 𝑥2 − 3 over ℚ. In general, for a polynomial 𝑓 ∈ ℚ𝑥 the smallest field containing all of its roots is
called the splitting field of 𝑓 . By analogy, the complex numbers ℂ are the smallest field extension of ℝ
that contains the roots of *every* real polynomial; equivalently, ℂ is an algebraic closure of ℝ. (Over ℚ
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the analogous minimal algebraically closed field is the field of algebraic numbers, a subfield of ℂ.)

Question 2: Problem 2. Characteristic 𝑝

Let 𝔽 be a field of characteristic 𝑝, meaning:

1 + · · · + 1︸      ︷︷      ︸
𝑝

Prove that (𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 for all 𝑎, 𝑏 ∈ 𝔽
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